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md_stencil: High-Performance Stencil Computations on CPU and GPU 
via Multi-Dimensional Homomorphisms

We	aim	 to	 achieve	 for	 stencil	 computa3ons	 in	 one	
approach	three	major	goals:

Produc'vity

Performance 1. Transforming	DSL	programs	to	MDH	representa6on.	

2. Genera3ng	auto-tunable	OpenCL	code	from	MDH	representa3on.	

3. Auto-tuning	 OpenCL	 code	 for	 target	 device	 and	 input/output	
char.	

4. Execu3ng	auto-tuned	OpenCL	code.	

Approach

Transformation: DSL → MDH
Hardware 

‣ CPU: Intel Xeon E5 
‣ GPU: NVIDIA V100

Preliminary Results
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The MDH Representation relies on three higher-order functions (patterns): 

j3d7pt(…)

TVM [7]: 2.75x on GPU for MCC  
on their own real-world data set 

from deep learning

Lift [6]: 1.9x-4.9x on CPU and 1.02x-2.34x on GPU for conv2d 
and j3d7pt on Lift’s own data sets

Intel MKL-DNN / NVIDIA cuDNN:  
1.3x on CPU and 3.31x on GPU for 
MCC on TVM’s real-world data set

Artemis [8]: 0.98x-1.07x on GPU 
for conv2d and j3d7pt

Speedups of md_stencil over well-performing 
machine- and hand-optimized approaches
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3. out_view( out )( p,q )( out[ p,q ] ) 

2. md_hom( *, (++,++,+,+) ) 

1. in_view( im, w )( p,q , r,s )( in[ p+r , q+s ], w[r,s] ) 

competitive to 
best available 

solutions

functional and performance — 
over architectures and input/

output characteristics easy to use 
& extensible

1. in_view:  uniformly	prepares	stencil-specific	input	data
2. md_hom:   specifies	stencil	computation
3. out_view: uniformly	prepares	stencil-specific	output	data

Example: Conv 2D  (conv2d)
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multiplie elements
in in and w

concatenate in  
p & q dimension

sum in  
r & s dimension

conv2d = out_view( … ) o md_hom( … ) o in_view( … ) 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