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Abstract

We introduce a new scheduling language, based on the for-
malism of Multi-Dimensional Homomorphisms (MDH). In
contrast to existing scheduling languages, our MDH-based
language is designed to systematically de-compose computa-
tions for the memory and core hierarchies of architectures,
and re-compose the computed intermediate results back to the
final result — we say (de/re)-composition for short. We argue
that our scheduling langauge is easy to use and yet expressive
enough to express well-performing (de/re)-compositions of
popular related approaches, e.g., the TVM compiler, for MDH-
supported computations (such as linear algebra routines and
stencil computations). Moreover, our language is designed
as auto-tunable, i.e., any optimization decision can option-
ally be left to the auto-tuning engine of our system, and our
system can automatically recommend schedules for the user,
based on its auto-tuning capabilities. Also, by relying on the
MDH approach, we can formally guarantee the correctness
of optimizations expressed in our language, thereby further
enhancing user experience. Our experiments on GPU and
CPU confirm that we can express optimizations that cannot
be expressed straightforwardly (or at all) in TVM’s schedul-
ing language, thereby achieving higher performance than
TVM, and also vendor libraries provided by NVIDIA and
Intel, for time-intensive computations used in real-world
deep learning neural networks.

CCS Concepts: - Software and its engineering — Com-
pilers.

Keywords: scheduling languages, GPU, CPU

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

CC ’23, February 25-26, 2023, Montréal, QC, Canada

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0088-0/23/02.
https://doi.org/10.1145/3578360.3580269

Richard Schulze

r.schulze@uni-muenster.de
University of Muenster, Germany

Sergei Gorlatch
gorlatch@uni-muenster.de
University of Muenster, Germany

61

Denys Shabalin
shabalin@google.com
Google, Switzerland

Mary Hall
mhall@cs.utah.edu
University of Utah, USA

ACM Reference Format:

Ari Rasch, Richard Schulze, Denys Shabalin, Anne Elster, Sergei
Gorlatch, and Mary Hall. 2023. (De/Re)-Compositions Expressed
Systematically via MDH-Based Schedules. In Proceedings of the 32nd
ACM SIGPLAN International Conference on Compiler Construction
(CC °23), February 25-26, 2023, Montréal, QC, Canada. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3578360.3580269

1 Introduction

Program code in state-of-the-art low-level approaches, like
CUDA and OpenCL, requires complex optimization to effi-
ciently target the deep and complex memory and core hi-
erarchies of modern architectures, such as GPU and CPU.
Modern high-performance compilers [8, 10, 12, 21, 22, 27,
39, 50, 53] automatically generate well-performing low-level
code; the optimization processes of these compilers are often
manually guided by a performance expert who explicitly
expresses code optimizations for the compiler (such as tiling
and parallelization) in form of programs in a so-called sched-
uling language. While such compilers with an expert-guided
optimization process have a high performance potential,
their scheduling languages usually consist of a set of fine-
grained low-level commands that have to be combined in
complex ways for expressing well-performing optimizations,
making the optimization process complex, cumbersome, and
error-prone for the performance expert.

We introduce a new scheduling language, based on the
formalism of Multi-Dimensional Homomorphisms (MDH) [41,
42]. Our MDH-based scheduling language enables a sys-
tematic optimization process for MDH-supported computa-
tions [42] (such as linear algebra routines and stencil com-
putations), by offering a single scheduling primitive that
systematically de- and re-composes computations to/from
the memory and core hierarchies of state-of-the-art archi-
tectures (in the following, referred to as (de/re)-composition).
We argue that the systematic nature of our language simpli-
fies implementing and reasoning about schedules, thereby
contributing to a simplified code optimization process for
performance experts. To further simplify the optimization
process for the expert, our language expresses all optimiza-
tion decisions (e.g., choosing an optimized memory access
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Figure 1. Overview of our approach (contribution of this paper highlighted in bold)

pattern) as auto-tunable, thereby enabling selecting particu-
lar (or even all) optimization decisions fully automatically,
as an alternative to choosing all optimizations manually by
the human expert. In contrast, existing scheduling languages
support auto-tuning often only for a restrictive set of opti-
mizations only, e.g., for automatically choosing optimized
sizes of tiles but not for choosing an optimized memory ac-
cess pattern, as we discuss in this paper. Moreover, based
on its auto-tuning capabilities, our system can automatically
recommend an already well-performing schedule (as we con-
firm experimentally in Section 6) that can be fine-tuned by
an expert user toward even higher performance. Also, by
relying on the MDH formalism and its algebraic foundation,
we can mathematically ensure the correctness of optimiza-
tions expressed in our language, thereby further contributing
to user’s productivity.

Our experiments on two NVIDIA GPUs and two Intel
CPUs confirm that our scheduling language is capable of ex-
pressing the optimization decisions of the popular TVM [12]
compiler for deep learning computations (matrix multipli-
cation and convolution), using real-world data sets taken
from three important neural networks: ResNet-50 [23], VGG-
16 [46], and MobileNet [26]. Our experiments also confirm
that we are able to achieve higher performance than TVM,
as well as vendor libraries provided by NVIDIA and Intel, on
both kinds of architectures, by exploiting the auto-tuning ca-
pabilities of our language design and its expressivity which
is sometimes beyond that of TVM’s scheduling language.

The rest of the paper is structured as follows. In Section 2,
we give a general overview of our approach and highlight
its particular contribution. Section 3 briefly summarizes the
existing MDH approach, and Section 4 recapitulates existing
scheduling languages. We introduce our new scheduling lan-
guage in Section 5 and experimentally evaluate our approach
in Section 6. Section 7 discusses related work, and Section 8
concludes our paper.

2 Overview

Figure 1 shows the overview of our approach. The original
work on MDHs, without the contributions of this paper, takes
as input a sequential C program consisting of a perfect loop
nest with static loop bounds (possibly annotated with an
optional, OpenMP-like directive that enables advanced opti-
mization, like parallelization in reduction dimensions [43]).

62

Arrays in the loop body are expected to be accessed via pure
index functions that take loop iterator variables as input and
can be statically resolved. An example input for our approach
is presented in Listing 1 and discussed later in Section 5. In
Figure 1, the loop nest is transformed, in step (D), to an equiv-
alent MDH representation, using the md_poly compiler [43].
Based on the program’s MDH representation, the original
MDH work automatically generates auto-tunable code, in
step @), using the MDH’s Code Generator (CG) [42]; the gen-
erated code is then auto-tuned!, in step @), to optimized,
executable code (e.g., in CUDA or OpenCL) using the Auto-
Tuning Framework (ATF) [45]. Finally, the auto-tuned code is
executed, in step (@), on the target device (e.g., a GPU or CPU)
using Host Code Abstraction (HCA) [40] - a high-level library
for programming host code which is required in modern ap-
proaches, like CUDA and OpenCL, for program execution
(e.g., for managing data transfers between host and device
memory).

#pragma mdh( CLil[j] : ++ , ++
for( int i = @ ; i < I ; ++i )

1 + )
2

3 for( int j j < J; ++j)
4

5

I ® -

for( int k 0 ; k <K ; ++tk )

)

CLilCj1 += ALilL[k] = BLkIL3]

Listing 1. Matrix multiplication in C (annotated in line 1
with an optional MDH directive enabling advanced opti-
mizations)

In this paper, we extend the existing MDH workflow in
Figure 1 by the part highlighted in bold in the figure: we en-
able performance experts to incorporate expert knowledge
about optimizations into the workflow, via MDH-based sched-
ules. Our schedules conveniently express MDH-supported
optimizations, e.g., exploiting fast memory resources and
parallelization, in a structured, systematic way (focus of
Section 5). The expert’s decisions are then incorporated in
step (2 into the generated code, rather than generating the
code in step (2) as generic in these decisions and requesting
the decisions later in step 3) from the auto-tuner (as done
in the original MDH work).

! While code generation approaches often use auto-tuning for simple, nu-
merical values only (e.g., identifying optimized sizes of tiles and numbers of
threads), MDH uses auto-tuning also for more advanced optimizations, e.g.,
identifying optimized memory access patterns and exploiting fast memory
resources for the input/output data [42].
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By incorporating the user into the optimization process,
we enable two major advantages over the original MDH
work: 1) better optimization, as an auto-tuning system might
not always make the same high-quality optimization deci-
sions as a human expert; 2) faster auto-tuning, as some (or
even all) optimization decisions might be made by the expert
user and thus are not left to the costly auto-tuner.

3 The MDH Approach

We demonstrate the existing MDH formalism by expressing
and discussing the example of Matrix Multiplication (MatMul).

1 MatMul<Type T | int I,J,K> :=
out_view<T>( C:(i,j,k)->(i,j) ) o
md_hom<I,J ,K>( *,
inp_view<T,T>( A:(i,j,k)->(i,k) ,
B:(i,3,k)->(k,3) )

(++,++,+) ) o

g W

Listing 2. Matrix Multiplication (MatMul) expressed in
the MDH formalism

Listing 2 shows how MatMul is expressed in MDH - we
derive such MDH expressions automatically for the user
from straightforward, annotated C code (Listing 1), accord-
ing to step D) in Figure 1. In Listing 2, we first fuse the
domain-specific input of MatMul - two matrices A€T™K and
BeTJ both of type T (e.g., T=float) - to a 3-dimensional
array of pairs (A[i,k],B[k,j]) € T x T. For this, we use
MDH'’s higher-order function (a.k.a skeleton or pattern in
programming [18]) inp_view which the MDH formalism
provides to specify accesses to the input data (two input ma-
trices in the case of MatMul). Higher-order function md_hom
expresses the basic computation part of computations: for
our MatMul example, after fusing MatMul’s two input matri-
ces via inp_view, function md_hom applies MatMul’s scalar
function * (multiplication) to each pair within the output
array of inp_view, and md_hom combines afterwards the ob-
tained results (multiplied pairs) in dimensions 1 and 2 via
++ (concatenation), and in dimension 3 via + (addition). Pat-
tern out_view specifies MatMul’s access to its output matrix.
The access is trivial in this example, but out_view could
potentially be used to store MatMul’s result matrix as, e.g.,
transposed (by replacing index function "(i, j,k)— (i, j)"
with "(i,j,k)—(j,1)") or in a stride fashion (by using
"(i,j,k)—>(i*xs1,j*s2)", for strides s1,s2€ N ), etc.

Based on the expression in Listing 2, the existing MDH
approach fully automatically generates executable program
code (steps @-@ in Figure 1), e.g., in CUDA for GPUs or
OpenCL for CPUs.

4 State-of-the-Art Scheduling Languages

Existing scheduling languages operate on a low abstraction
level: they offer primitives, like tile and bind, to express
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1 # exploiting fast memory resources for "C"

2 matmul_local, = s.cache_write([matmull], "local
")

3 matmul_1, matmul_2, matmul_3 = tuple(
matmul_local.op.axis) + tuple(matmul_local
.op.reduce_axis)

4 SHR_1, REG_1 = s[matmul_locall].split(matmul_1,

factor=1)

5 # 9 further split commands

6 s[matmul_locall.reorder (BLK_1, BLK_2, DEV_1,
DEV_2, THR_1, THR_2, DEV_3, SHR_3, SHR_1,
SHR_2, REG_3, REG_1, REG_2)

7

8 # (loop unrolling)

9

10 # tiling:

11 matmul_1, matmul_2, matmul_3 = tuple(matmul.op

.axis) + tuple(matmul.op.reduce_axis)

12 THR_1, SHR_REG_1 = s[matmull].split(matmul_1,
factor=1)

13 # 5 further split commands

14 s[matmull.reorder (BLK_1, BLK_2, DEV_1, DEV_2,
THR_1, THR_2, SHR_REG_1, SHR_REG_2)

15 s[matmul_local].compute_at(s[matmull], THR_2)

16

17 # block/thread assignments:

18 BLK_fused = s[matmul]. fuse(BLK_1, BLK_2)

19 s[matmul].bind(BLK_fused, te.thread_axis("
blockIdx.x"))

20 # (similar to lines 18 and 19)

21

22 # exploiting fast memory resources for "A":

23 A_shared = s.cache_read(A, "shared", [
matmul_locall)

24 A_shared_ax@, A_shared_ax1 = tuple(A_shared.op
.axis)

25 A_shared_ax@_ax1_fused = s[A_shared]. fuse(
A_shared_ax@, A_shared_ax1)

26 A_shared_ax@_ax1_fused_o,
A_shared_ax@_ax1_fused_i = s[A_shared].
split (A_shared_ax@_ax1_fused, factor=1)

27 s[A_shared].vectorize(A_shared_ax@_ax1_fused_i
)

28 #

29 s[A_shared].compute_at(s[matmul_locall, DEV_3)

30

31 # exploiting fast memory resources for "B":

32 # (analogous to lines 23-29)

Listing 3. TVM+Ansor schedule (shortened for brevity)
for Matrix Multiplication as used in ResNet-50 network
on NVIDIA Ampere GPU

fine-grained code optimizations, making the existing lan-
guages expressive, but also complex, as the primitives have
to be combined in complex ways to express well-performing
optimizations. The low-level design of the existing languages
makes them particularly hard to error-check automatically
and also hard to combine with techniques from automatic
program optimization (auto-tuning [9]), as we discuss later.
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Listing 3 shows an example schedule of the popular TVM
compiler (shortened and simplified for brevity) generated us-
ing TVM’s recent Ansor optimization engine [55]. The TVM
schedule expresses optimization decisions for Matrix Multi-
plication (MatMul) in CUDA when computed on NVIDIA
A100 GPU for input matrices taken from the real-world
ResNet-50 neural network. In lines 2-6 the primitives ex-
press that CUDA’s fast register memory should be used for
storing intermediate results of the computed C output matrix.
For this, the computation of the C matrix is de-composed
using multiple times primitive split (lines 4 and 5) and re-
ordered (line 6). Similarly, the schedule expresses using fast
shared memory for the A and B input matrices (lines 23-32).
Lines 11-15 prescribe a basic loop structure in which the
copy operations for matrices to/from fast memory resources
are inserted (lines 15, 29, 32).

1 I, J, K=16, 1000, 2048
2

3 A = te.placeholder((I, K), dtype='float32')
4 B = te.placeholder ((K, J), dtype='float32')
5

6 k = te.reduce_axis((0, K))

7 C = te.compute(

8 (I, 1,

9 lambda i, j:

10 te.sum(A[i, k] = B[k, jl, axis=k)

11 )

Listing 4. Matrix multiplication expressed in TVM’s
high-level program representation

Listing 4 shows for completeness how MatMul is expressed
in TVM’s high-level program representation which operates
on the same, high abstraction level as the MDH program in
Listing 2. Based on this representation in Listing 4 and the
scheduling program in Listing 3, TVM generates executable
CUDA code for MatMul that is optimized according to the
optimization decisions expressed in Listing 3.

5 MDH-Based Schedules

This section introduces and discusses our MDH-based sched-
uling language. In Section 5.1, we illustrate our language de-
sign using a CUDA example, and we show in Section 5.2 how
our language is used for programming approaches different
from CUDA. Section 5.3 outlines our code generation (e.g.,
in CUDA or OpenCL), and Section 5.4 discusses the formal
correctness of our approach. Section 5.5 shows how auto-
tuning is used in our language, and Section 5.6 discusses how
we automatically generate schedules for the user that can
be fine-tuned by hand toward toward higher performance.
Section 5.7 demonstrates how our scheduling programs can
be visualized and also be generated from visual inputs.

2 Our approach frees the user from the burden of using special representa-

tions as in Listings 4 and 2, by taking as input straightforward, annotated
program code in the well-known C programming language (Listing 1).
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5.1 Language Design

We illustrate our MDH-based scheduling language by show-
ing how it is used for expressing the particular optimization
decisions of the deep-learning compiler TVM for matrix
multiplication in Listing 3. To express matrix multiplication
in our approach, we provide to our compiler: 1) a schedul-
ing program, and 2) a straightforward C implementation of
MatMul (Listing 1); the implementation is optionally anno-
tated with an OpenMP-like MDH directive in line 1 which en-
ables advanced optimizations, e.g., parallelizing loops whose
iterations depend on each other (as in line 4 of Listing 1).
The directive indicates that intermediate results computed
by iterations of the first two loops (lines 2 and 3 in List-
ing 1) are combined straightforwardly (via symbol ++ which
denotes concatenation in the MDH formalism) and that iter-
ations of the third loop (line 4) are combined non-trivially
via point-wise addition (symbol +).

Listing 5 shows the program in our scheduling language
that is equivalent to the TVM schedule in Listing 3, i.e., we
generate from Listings 5 and 1 the same CUDA code (apart
from some minor syntactical differences) as TVM generates
from Listings 3 and 4 for matrix multiplication when com-
puted on NVIDIA A100 GPU using ResNet-50 input matrices.

Our language consists of exactly one primitive, namely
(de/re)-comp; we use the primitive to split the computation
(in this example MatMul) systematically into smaller sub-
problems that we assign to the memory and core hierarchies
of the target architecture.

Our primitive has the following, general structure:

(de/re)-comp( /*x sub-problem size */ )
( /* memory hierarchy assignments */ )
( /* core hierarchy assignments x/ )

We describe our primitive in the following by showing
how it is used for successively (de/re)-composing MatMul for
the GPU’s memory and core hierarchies, in 6 steps shown
in Listing 5: lines 7-10 (step 1), lines 12-15 (step 2), etc.
Lines 1-5 in Listing 5 are optional in our approach and serve
for completeness only; they indicate that: a) our iteration
space has initially a size of (I,J,K):= (16,1000,2048),
according to the ResNet-50 input matrices which are of sizes
(I,K) =16x2048 and (K, J) = 2048x1000; b) the input and
output matrices are read/written from/to CUDA’s device
memory (DM) in CUDA and that matrices use a standard
memory layout (indicated via [1, 2] in lines 3 and 4); c) the
computation (a.k.a. kernel in CUDA) is performed by a GPU.
Low-level code optimizations (loop unrolling, constant sub-
stitution, etc) are implicit in our approach to keep our lan-
guage simple — these optimization often do not need to be
controlled explicitly to achieve high performance, as we
confirm in our experiments later. We perform low-level opti-
mizations automatically based on straightforward heuristics.
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Block Parallelization (lines 8-10). The MatMul compu-
tation is split into tiles of size 8 X 20 x 2048 (line 8), i.e.,
(16/8) * (1000/20) * (2048/2048) = 2 * 50 * 1 many tiles.
Symbol * (a.k.a. caret) is used in line 8 for convenience: it in-
dicates that the tile size of the previous step is re-used in the
last dimension (i.e., this dimension is not tiled), and in line 9
that the memory regions of buffers are re-used, i.e., no mem-
ory optimizations are performed in this (de/re)-composition
step. Line 10 indicates that we iterate over tiles in parallel,
using CUDA Blocks (BLK). Here, a non-standard swizzle pat-
tern [37] is used, i.e., we use CUDA’s block dimension x to
iterate over tiles in the second tile dimension (i.e., 50 CUDA
blocks are started in x dimension), and we use CUDA dimen-
sion y to iterate over tiles in the first dimension (2 CUDA
blocks started in y dimension); the standard swizzle pattern
would be using block dimension x for the first tile dimension
and block dimension y for the second, correspondingly.

Tiling (lines 13-15). Each of the (8 X 20 X 2048)-sized
tiles of the previous step is split into further tiles of size
4 % 20 X 2048 (only the first dimension is tiled). No memory
optimizations are performed in this (de/re)-composition step
(indicated by caret symbols in line 14), and the tiles are pro-
cessed sequentially, using a 3-level for-loop nest®; numbers
.1/.2/.3 in line 15 prescribe the order of loops in our gener-
ated code (discussed in detail in Section 5.3): the first loop in
the nest iterates over tiles in the first dimension (i.e., the loop
makes 8/4 = 2 iterations), the second loop over tiles in the
second dimension (one iteration), and third loop over tiles
in the third dimension (one iteration). Consequently, this
(de/re)-composition step in lines 13-15 expresses a classical
loop tiling optimization. Annotation 6: in line 13 expresses
that in our generated code (discussed in Section 5.3), the
loop nest for iterating over the (8 X 20 X 2048)-sized tiles is
generated after loops for steps 1-5 in lines 8-10 and 19-36,
i.e., at the innermost loop level.

Thread Parallelization & Register Memory Utiliza-
tion (lines 19-21). Each tile of the previous step is again
split into tiles of size 1 X 1 X 2048, which are computed in
parallel by CUDA Threads (THR) (using again a non-standard
swizzle pattern). Each thread computes its part of the C out-
put matrix in Register Memory (RM) (line 20).

Shared Memory Utilization (lines 24-26). Each of the
(1x1x2048)-sized tiles of the previous step is split into further
tiles of size 1 X 1 X 256; for each of the new (1 X 1 X 256)-sized
tiles, the corresponding parts of input matrices A and B are
accessed in CUDA’s Shared Memory (SM) (data copies are
performed in our generated code). According to line 26, the
tiles are processed sequentially, via a 3-level for-loop nest -
in contrast to loops generated according to line 15, the loops

3 CUDA offers blocks (BLK) and threads (THR) to iterate over multi-
dimensional index spaces in parallel, and it uses nested for-loops (FOR)
to iterate over spaces sequentially.
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1 // initialization

2 0: (de/re)-comp( 16,1000,2048 )

3 ( A:DM[1,2],B:DM[1,2] ;
4 C:DM[1,2] )
5 ( GPU.y,GPU.x,GPU.z )

6

7 // parallelization over CUDA Blocks

8 1: (de/re)-comp( 8,20,* )

9 Ay/\ ; A )

10 ( BLK.y,BLK.x,BLK.z )
11

12 // tiling 1

13 6: (de/re)-comp( 4,*," )

14 ( A,/\ ; A )

15 ( FOR.1,FOR.2,FOR.3 )
16

17 // parallelization over CUDA Threads &
18 // utilization of CUDA Register Memory
19 2: (de/re)-comp( 1,1, )

20 ( *,* ; C:RM[1,2]1 )

21 ( THR.y,THR.X,THR.z )
22

23 // utilization of CUDA Shared Memory
24 3: (de/re)-comp( *,",256 )

25 ( A:SM[1,2]1,B:SM[1,2] ; *~ )
26 ( FOR.2,FOR.3,FOR.1 )
27

28 // tiling 2

29 4: (de/re)-comp( *,*,2 )

30 Ay/\ ; A)

31 A’A’A)

32

33 // tiling 3

34 5: (de/re)-comp( *,*,1 )

35 Ay/\ ; A )

36 (Ayl\’/\)

Listing 5. MDH-based schedule for optimizing matrix
multiplication on NVIDIA A100 GPU according to the
optimization decisions of TVM+Ansor in Listing 3

according to line 26 are permuted: the first loop in the nest
iterates over tiles in the last dimension (a.k.a. k-dimension in
the context of MatMul), and the other two loops iterate over
the first and second tile dimension (this is a typical locality
optimization? for MatMul [32]).

Tiling (lines 29-31 and lines 34-36). Classical tiling is
expressed (similarly to lines 13-15).

5.2 Targeting Different Programming Models

While Section 5.1 presents our scheduling language for ex-
pressing CUDA optimizations, our language can be used for
targeting also other kinds of programming models, such as
OpenMP for CPUs and OpenCL for multiple kinds of architec-
tures; the models rely on deeper/shallower memory and core
hierarchies than CUDA. For example, an OpenMP schedule

4 In this particular example, the permutation has no effect on performance,
because two loops in the nest make only one iteration. We express this
permutation in Listing 5 to be consistent with the TVM schedule in Listing 3.
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in our language would be very similar to a CUDA schedule
as in Listing 5 with the only differences that: 1) the user can
use in our OpenMP schedules only THR. xxx (as in line 21 of
Listing 5), but not BLK. xxx (line 10 of the listing), because
OpenMP relies on a 1-layered thread hierarchy only and thus
has no notion of CUDA blocks (BLK); 2) instead of CUDA
memory tags DM, SM, RM (as in lines 20,25 of Listing 5), our
OpenMP schedules use memory tags L1,L2, L3 (for caches)
and MM (for main memory). In our generated OpenMP code,
as the OpenMP model does not allow explicitly programming
caches, our OpenMP memory optimizations correspond to
the popular packing optimization [11].

5.3 Code Generation

Listing 6 shows as pseudocode the CUDA program that we
generate according to the optimization decisions in Listing 5.
Each (de/re)-composition step in Listing 5 corresponds to a
part of a deep loop nest in the pseudocode (lines 2-32). Copy
operations, e.g., from device to shared memory, are inserted
at the corresponding positions in the pseudocode (lines 17
and 45). Buffers are accessed via indices i_<1>_<d> (lines 34-
41) where <1> and <d> indicate the accessed tile’s correspond-
ing layer 1 and dimension d; functions idx_<MEM>_<DIM>
straightforwardly flatten the index space, e.g.:

idx_RM_1(i_2_1,i_4_1,i_5_1,i_6_1) =
121 % (I_4_1%I_5_1%I_6_1) + i_4_1 x
(I_5_1*I_6_1) + i_5_1 * (I_6_1) + i_6_1

5.4 Correctness

Our scheduling language is designed such that the correct-
ness of our scheduling programs can be statically verified,
by checking the formal constraints defined by the MDH
formalism [41, 42], e.g., that the results of different CUDA
thread blocks can be re-composed in the reduction dimen-
sion (the loop in line 4 of Listing 1) in device memory only
in CUDA [34]. For example, using C: SM[1,2] or C:RM[1, 2]
in line 9 of Listing 5 would be invalid in general® — we issue
an error message — because CUDA cannot combine results
of different thread blocks in shared memory SM or register
memory RM.

5.5 Auto-Tuning

Our scheduling language is designed such that any optimiza-
tion decision can optionally be selected automatically via
auto-tuning [9], as an alternative to hand-choosing all opti-
mizations manually by a performance expert. Thereby, we
enable conveniently combining human expert knowledge
with techniques from automatic program optimization.

> For the particular scheduling program in Listing 5, using C: SM[1,2] or
C:RM[1, 2] in line 9 is valid, because only one thread block is started in the
reduction dimension.
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1 // 1: parallelization over CUDA Blocks

2 i_1_.2 = blockIdx.x; { // (1000/20) blocks

3 i_1.1 = blockIdx.y; { // (16/8) blocks

4 for(i_1_3 = 0 ; i_1_3 < 2048/2048 ; ++i_1_3) {
5

6 // 2: parallelization over CUDA Threads &

7 // utilization of CUDA Register Memory

8 1_.3_.2 = threadIdx.x; { // (20/1) threads

9 1i_3_1 = threadIdx.y; { // (4/1) threads

10 for(i_3_3 = @ ; i_3_3 < 2048/2048 ; ++i_3_3) {
11

12 // 3: utilization of CUDA Shared Memory

13 for(i_4_3 = 0 ; i_4_3 < 2048/256 ; ++i_4_3) {
14 for(i_4_1 =0 ; i_4_1 < 1/1 ;o ot+i_4_.1) {
15 for(i_4_2 =0 ; i_4_2 < 1/1 ;o t+ri_4_2) {
16

17 // copy parts of A & B from DM to SM

18

19 // 4: tiling 2

20 for(i_5.3 = 0 ; i_5_.3 < 256/2 ; ++i_5_3) {

21 for(i_5_1 =0 ; i_5_1 < 1/1 ;o ++i_5_1) {

22 for(i_5.2 =0 ; i_5.2 < 1/1 s ++i_5.2) {

23

24 // 5: tiling 3

25 for(i_6_3 =0 ; i_6_3 < 2/1 ; ++i_6_3) {

26 for(i_6_1 =0 ; i_6_1 < 1/1 ; ++i_6_1) {

27 for(i_6_2 =0 ; i_6_2 < 1/1 ; ++i_6_2) {

28

29 // 6: tiling 1

30 for(i_2_1 =0 ; i_2_1 < 8/4 ;o ++i_2.1) {
31 for(i_2_2 =0 ; i_2_2 < 20/20 ;o t+i_2_2) (
32 for(i_2_3 =0 ; i_2_3 < 2048/2048 ; ++i_2_3) {
33

34 C_RM[ idx_RM_1( i_2_1,i_4_1,i_5_1,i_6_1 ) ,

35 idx_RM_2( i_2_2,i_4_2,i_5_2,i_6_2 ) ]

36  +=

37 A_SM[ idx_SM_1( i_2_1,i_5_1,i_6_1 ) ,

38 idx_SM_3( i_2_3,i_5.3,i_6_3 ) 1]

39 *

40 B_SM[ idx_SM_3( i_2_.3,i.5.3,i_6_3 ) ,

41 idx_SM_2( i_2_2,i_5_2,i_6_2 ) 1;

42

43 }...} // i_2.3 - i_4_3

44

45 // copy parts of C from RM to DM

46

47 ...} // i_.3.3 - i_1_.1

Listing 6. CUDA pseudocode generated according to
MDH schedule in Listing 5 and program specification in
Listing 1

To exploit auto-tuning in our language, the user uses the
question mark symbol. For example, if we used in line 20
of Listing 5 symbol ? for the memory layout (i.e., RM[?,?]
instead of RM[1, 2]), our auto-tuner would try to automat-
ically identify a memory layout that is optimized for the
particular target architecture and characteristics of the in-
put/output data. In addition to symbol question mark, our
language allows restricting the set of potential values, by
explicitly stating them in curly braces, thereby reducing the
search space size and consequently the tuning time.
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Internally, our approach generates the search space of only
valid optimization decisions; invalid configurations are de-
tected according to Section 5.4 and excluded from the search
space (a.k.a. Constrained-Optimization Problem (COP) [52]),
for an efficient auto-tuning process. As concrete auto-tuner,
we use the Auto-Tuning Framework (ATF) [45] which has
proved to be efficient for complex COPs.

Combining human expert knowledge with auto-tuning is
important: auto-tuning might make better performing deci-
sions than humans for some optimizations (e.g., identifying
optimized tile size values), and auto-tuning enables using
the same scheduling program for multiple devices (a.k.a per-
formance portability [36]).

5.6 Automatic Schedule Generation

Our system can automatically generate a schedule for the
user; the generated schedule then can be fine-tuned by an
expert user toward higher performance. We confirm in Sec-
tion 6 that our automatically generated schedules already
achieve encouraging performance results, even when they
are not fine-tuned by a human expert.

For automatically generating schedules, our system uses a
schedule that contains multiple (de/re)-composition steps; in
each step, the (de/re)-comp primitive contains question
mark symbols ? only, which our auto-tuner replaces for the
user by concrete values optimized for the particular target
architecture and characteristics of the input and output data.
The concrete number of (de/re)-composition steps is chosen
by our system specifically for the target programming model.
For example, our system recommends a schedule with 3 + 3
(de/re)-composition steps when targeting CUDA, because
CUDA relies on three core layers (Core, Warp®, and Block)
and three memory layers (Device, Shared, and Private), as
discussed in Section 5.

5.7 Visualization

To further enhance the usability of our approach, we intro-
duce an equivalent, graphical representation for our sched-
uling programs. Our graphical scheduling representation en-
ables both: 1) visualizing a scheduling program implemented
as code (as in Listing 5), and 2) generating the scheduling
program from a visual input.

Figure 2 shows our graphical representation for the sched-
uling program in Listing 5 (lines 12-31 of the listing are
abbreviated in Figure 2, via vertical ellipsis, for brevity). Flex-
ible parts of our graphical schedule representation are high-
lighted gray in Figure 2 and are set manually by the user
(or left to the auto-tuner via symbol ?) when generating
scheduling code from the visual representation.

© Warps (WRP) represent a further thread layer in CUDA and can be used in
our language the same as BLK and THR in Listing 6. Warps are not used in
Listing 6, because the TVM schedule in Listing 3 does not exploit warp-level
optimizations, such as shuffle operations [33].
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In our graphical representation, each (de/re)-composition
step is separated via dotted lines. The split sizes (e.g., from
line 2 in Listing 5) are denoted in the center part of Figure 2.
Memory regions for input/output buffers (as in lines 3,4 of
Listing 5) are stated below buffers in Figure 2, and a buffer’s
desired memory layout (e.g., [1,2] also in lines 3,4) is vi-
sualized in form of a two-dimensional coordinate cross. To
each dimension of the iteration space (depicted as three-
dimensional coordinate crosses in the center part of Figure 2),
we assign a corresponding core layer (e.g., denoted in line 5
in Listing 5). Formally, the MDH approach uses different iter-
ation spaces for the input data (visualized in Figure 2 via the
three-dimensional coordinate crosses below INP MDA) and
output data (coordinate crosses below OUT MDA); the axes are
annotated by our visualization tool with the corresponding
combine operators: in MDH, always concatenation ++ for
input data, and concatenations and addition for the output
in the case of MatMul (as discussed in Section 3). However,
when targeting with MDH program code in imperative-style
languages (such as CUDA, OpenCL, and OpenMP), these two
iteration spaces coincide. Consequently, in Figure 2, the two
three-dimensional coordinate crosses must always be anno-
tated equally in the gray text fields, as in this work, we focus
on imperative-style programming models. The numbers -6
in boxes, which are also located in the center part of Figure 2,
correspond to the numbers in, e.g., line 2 in Listing 5, and set
the order in which (de/re)-composition steps are processed
in our generated code. The index functions used to access
input and output buffers are stated below view functions in
Figure 2.

6 Experimental Evaluation’

We experimentally evaluate the performance achieved by
our approach as compared to TVM. To make comparison
challenging for us, we focus on time-intensive computations
used in real-world deep learning neural networks, for which
TVM is specifically designed and optimized: Matrix Multipli-
cation (MatMul) and Multi-Channel Convolution (MCC) [14]
as used in networks ResNet-50, VGG-16, and MobileNet, ac-
cording to their TensorFlow implementations [47-49] when
computing the popular ImageNet [28] data set.

We generate TVM schedules using its Ansor optimizer [55],
and we use for our approach the schedules that are automat-
ically generated by our system (discussed in Section 5.6).

For a fair comparison, we use for each tuning run of our
auto-tuner [45] and Ansor the same, generous auto-tuning
time of 12h. We use such generous tuning time to avoid
tuning issues in our experiments, which are not relevant for
this work and analyzed in [45] - in all tuning runs, the final
tuning result could be found in less than 12h for both our
approach as well as Ansor.

7 All experiments described in this section can be reproduced using our
artifact implementation [7].
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Figure 2. Visual representation of the MatMul (de/re)-composition in Listing 5 (lines 12-31 abbreviated via ellipsis, for brevity)

6.1 Experimental Setup

We run our experiments on a cluster containing two different
kinds of GPUs and CPUs:

NVIDIA Ampere GPU A100-PCIE-40GB
NVIDIA Volta GPU V100-SXM2-16GB
Intel Xeon Skylake CPU Gold-6140@
Intel Xeon Broadwell CPU E5-2683

The same as TVM, we use our approach to generate CUDA
code when targeting GPUs, and OpenCL code for CPUs®.

We use recent versions of frameworks, libraries, and com-
pilers: TVM 0.8.0; NVIDIA cuBLAS and NVIDIA cuDNN from
NVIDIA HPC SDK 22.1; Intel oneMKL/oneDNN 2022.0.0.
For all experiments, we collect measurements until the 99%
confidence interval was within 5% of our reported means,
according to [25].

We use as operating system CentOS Linux release 7.9.2009,
Linux kernel version 3.10.0-1160.80.1.el7.x86_64, and NVIDIA
driver 520.61.05.

8 TVM allows for CPUs also generating LLVM code [30] which includes
assembly-level optimizations (currently beyond the scope of our work).

6.2 Case Study: Deep Learning

Figure 3 reports the speedup achieved by our approach over
TVM+Ansor; performance achieved by assembly-optimized
approaches are also reported for completeness, but currently
beyond the scope of our approach which targets CUDA,
OpenCL, and OpenMP, all of which operating at a higher
abstraction level.

We observe that we usually achieve the high performance
of TVM+Ansor and often perform even better. For example,
we achieve a speedup > 2X over TVM on NVIDIA Ampere GPU
for matrix multiplications as used in the inference phase of
the ResNet-50 neural network, because our auto-tuning sys-
tem has decided to exploit parallelization for computing in-
ner tiles (a.k.a strided memory access), i.e., in lines 31 and 36
of Listing 5, rather than lines 10 and 21, which achieves
higher performance for this particular MatMul example from
ResNet-50. In contrast, Ansor rigidly parallelizes the compu-
tations of outer tiles (lines 10 and 21); most likely because
binding parallelization to tiles cannot be expressed straight-
forwardly as auto-tunable in TVM’s scheduling language.
Also, for MatMul-like computations, Ansor always caches
parts of the input matrices in GPU’s shared memory, and it
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NVIDIA Ampere GPU
Deep ResNet-50 VGG-16 MobileNet
Learning Training Inference Training Inference Training Inference
MCC MatMul MCC MatMul MCC MatMul MCC MatMul MCC MCC
TVM+Ansor 1.00 1.26 1.05 2.22 1.00 1.42 1.00 1.14 1.00 1.00
NVIDIA cuDNN 0.92 - 1.85 - 1.22 - 1.94 - 1.81 2.14
NVIDIA cuBLAS - 1.58 - 2.67 - 0.93 - 1.04 - -
NVIDIA Volta GPU
Deep ResNet-50 VGG-16 MobileNet
Learning Training Inference Training Inference Training Inference
MCC MatMul MCC MatMul MCC MatMul MCC MatMul MCC MCC
TVM+Ansor 1.00 1.21 1.00 1.79 1.00 1.11 1.06 1.00 1.00 1.00
NVIDIA cuDNN 1.21 - 1.29 - 2.80 - 3.50 - 2.32 3.14
NVIDIA cuBLAS - 1.33 - 1.14 - 1.09 - 1.04 - -
Intel Skylake CPU
Deep ResNet-50 VGG-16 MobileNet
Learning Training Inference Training Inference Training Inference
MCC MatMul MCC MatMul MCC MatMul MCC MatMul MCC McC
TVM+Ansor 1.53 1.05 1.14 1.20 1.97 1.14 2.38 1.27 3.01 1.40
Intel oneDNN 0.39 - 5.07 - 1.22 - 9.01 - 1.05 4.20
Intel oneMKL - 0.44 - 1.09 - 0.88 - 0.53 - -
TVM+ANSOr | 150 | arr | non | aor | 40
Intel Broadwell CPU
Deep ResNet-50 VGG-16 MobileNet
Learning Training Inference Training Inference Training Inference
MCC MatMul MCC MatMul MCC MatMul MCC MatMul MCC MCC
TVM+Ansor 1.53 1.60 1.29 1.53 1.32 1.00 1.27 1.02 2.42 1.92
Intel oneDNN 1.30 - 1.81 - 2.94 - 2.85 - 1.83 4.47
Intel oneMKL - 1.45 - 1.36 - 1.35 - 0.50 - -
TUMHANSOr | 1 20 | 1428 | 106 mes | e oae o o0 L,
1.4 1Ly 1 1 1.14

Figure 3. Speedup (higher is better) of our approach over TVM+Ansor and vendor libraries for time-intensive deep learning
computations. Dash symbol indicates unsupported computations. Assembly-optimized approaches (currently beyond the
scope of our work) are separated by a straight line and are listed for completeness.

computes these cached parts always in register memory. In
contrast, our auto-tuner has decided to not cache inputs into
fast memory resources for this particular MatMul example in
ResNet-50. For the MatMul example of ResNet-50s training
phase, we achieve a positive speedup over TVM+Ansor, be-
cause our auto-tuner decided to store parts of input matrix A
as transposed into fast memory (by using in our schedul-
ing program A[2, 1] instead of A[1, 2]). Storing parts of the
input/output data as transposed is not considered by An-
sor as optimization, because such optimization cannot be
expressed in TVM’s scheduling language [4]. Moreover, we
achieve a speedup over TVM+Ansor for MatMul used in the
training phase of the VGG-16 network: we start 64 CUDA
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blocks for computing MatMul’s reduction dimension, while
TVM+Ansor uses 1 block only for this dimension, because
TVM cannot parallelize reductions over CUDA blocks [2].

Our positive speedups over TVM+Ansor for other experi-
ments are for similar reasons as discussed above.

The better performance of vendor libraries in Figure 3 over
our approach is because the libraries are optimized at the
assembly level, whereas our approach operates at the higher
CUDA/OpenCL abstraction level which offers less optimiza-
tion opportunities [19, 29]. Our approach sometimes achieves
better performance than libraries, because our implemen-
tations can be auto-tuned for a particular combination of
architecture and also data characteristics (such as size and
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memory layout), the same as the TVM+Ansor-generated im-
plementations. In contrast, the libraries rely on hand-chosen
heuristics optimized toward average high performance over
data characteristics only.

6.3 Computations Different from Deep Learning

Our approach achieves encouraging performance results
also for computations different from deep learning, which
we do not discuss for brevity, because TVM is highly op-
timized toward deep learning computations, thereby often
not achieving good performance results for other computa-
tions. For example, we achieve speedups over TVM+Ansor
of > 170x already for straightforward dot products, because
TVM struggles with optimizing reduction computations. We
achieve the same encouraging performance results as re-
ported for the existing MDH+ATF approach in [42-45], e.g.,
for quantum chemistry computations and data mining algo-
rithms, because our approach internally uses MDH and ATF
(see Figure 1) when generating schedules automatically.

7 Related Work

Popular scheduling approaches include TVM [12], Halide [39],
Elevate [22], DaCe [10], Tiramisu [8], CUDA-CHIiLL [27],

Fireiron [21], Sequioa [16], DISTAL [53], and LoopStack [50].
All these approaches have in common that their scheduling

languages rely on fine-grained, low-level primitives (as in

Listing 3), which are expressive but complex and error-prone

to use, usually even for experts. In contrast, our scheduling

language relies on a single high-level primitive that sys-
tematically de- and re-composes computations to/from the

memory and core hierarchies of architectures. We argue that

the systematic, hierarchical nature of our language design

simplifies implementing and reasoning about schedules. Fur-
thermore, we have designed our language such that optimiza-
tions can be auto-tuned; in contrast, the related approaches

often have only limited potential for auto-tuning. For exam-
ple, TVM offers AutoTVM [13] which can be conveniently

used for auto-tuning tile size values in TVM schedules, but

not for identifying optimized memory access patterns, be-
cause memory access patterns are challenging to express as

auto-tunable in TVM’s scheduling language.

Moreover, we see the following advantages of our ap-
proach over the related work.

By relying on the MDH formalism, we are able to mathe-
matically guarantee the correctness of our generated code
and to provide strong error checking. In contrast, it is easy
to implement schedules in Fireiron that generate incorrect
GPU code, without issued error messages. Polyhedral ap-
proaches, such as CUDA-CHill and Tiramisu, can guarantee
the correctness of some constraints, e.g., of tiling optimiza-
tions, but they often have difficulties with constraints set
by programming models, e.g., that in CUDA, the results of
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thread blocks can only be combined in device memory. TVM
also tends to struggle with detecting user errors [5, 6].
While existing scheduling languages often offer optimiza-
tions for multiple loop nests (e.g., so-called fusing primi-
tives), they tend to suffer from expressivity issues for indi-
vidual nests. For example, Fireiron has a particular focus
on data movement optimizations, but it has difficulties with
loop-level optimizations, e.g., expressing loop permutations.
In contrast, TVM is able to conveniently express loop permu-
tations, but it struggles with optimizing data movements [4].
Scheduling approaches are often limited to narrow classes
of computations and architectures: Fireiron can only be used
for matrix multiplications on GPUs, and TVM struggles with
computations relying on multiple combine operators [1, 3].
Other related approaches include [15, 20, 24, 31, 35, 51, 54]
which operate at a higher abstraction level than our approach.
For example, [31] introduces program optimizations at the
tensor abstraction level, whereas our approach is focussed
on mapping tensor programs eventually to the memory and
core hierarchies of state-of-the-art parallel architectures. We
consider higher-level approaches as greatly combinable with
our approach, by using them as a frontend for our system.

8 Conclusion & Future Work

We introduce a new scheduling language, based on the ap-
proach of Multi-Dimensional Homomorphisms (MDH). The
goal of our language design is to express (de/re)-compositions
in a systematic way, thereby simplifying the complex and
error-prone optimization process for performance experts.
In particular, we have designed our language such that cor-
rectness of our schedules can be checked automatically and
that any optimization decision can optionally be left to our
auto-tuner. We demonstrate that our language can express
optimization decisions of the popular TVM compiler for
computations from its target application class — deep learn-
ing — and often outperforms TVM in these computations due
to the design and expressiveness of our language.

In future work, we aim to target also computations consist-
ing of multiple loop nests, rather than optimizing loop nests
individually. Moreover, we plan to target domain-specific
hardware extensions, such as NVIDIA’s tensor cores (in-
spired by [17]) and we aim to support further programming
models, e.g., LLVM [30] to benefit from assembly-level opti-
mizations. Another major goal is to support computations
on sparse data formats, which requires slightly extending
the MDH approach, similarly as in [38].
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