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Abstract Homomorphisms (traditionally defined on lists) are functions that can be
parallelized by the divide-and-conquer paradigm. In this paper, we introduce an
extension of the traditional homomorphism concept—multi-dimensional homomor-
phisms (MDHs)—which capture parallelism onmulti-dimensional arrays.We propose
md_hom—anewparallel pattern (a.k.a. algorithmic skeleton), based on theMDHcon-
cept, to simplify parallel programming for a broad class of applications. The md_hom
pattern is general enough to subsume common parallel patterns such as map and
reduce, and also more complex functions built by composing and nesting several
patterns. We present a generic implementation schema for md_hom in form of an
efficient, correct-by-construction OpenCL pseudocode that targets various parallel
architectures such asmulti-core CPU and graphics processing unit (GPU).We develop
our pseudocode schema as parametrized in tuning parameters: these allow to optimize
the code for different devices and input sizes by performing an automated search on
the parameter space. We evaluate the schematically generated, executable OpenCL
code using the example of general matrix–vector multiplication (GEMV)—an impor-
tant linear algebra routine which has gained more attention recently due to its use in
the application area of deep learning—on two parallel architectures—Intel CPU and
NVIDIAGPU. Our performance results are competitive and in some cases even better
than the hand-tuned GEMV implementations provided by the state-of-the-art libraries
Intel MKL and NVIDIA cuBLAS, as well as the auto-tunable OpenCL BLAS library
CLBlast.
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1 Introduction

A function h on lists is called a List Homomorphism (LH) iff there exists a combine
operator � such that

h(x ++ y ) = h(x) � h(y)

where ++ denotes list concatenation, i.e., h can be computed by splitting its input in
chunks x and y, computing h in parallel on x and y, and then combining the partial
results h(a) and h(b) by using �. List homomorphisms are a well-studied class of
functions for which efficient parallel implementation schemes, e.g., in MPI, have been
developed [7].

Onemajor weakness of traditional LHs is that they are defined on lists and thus cap-
ture parallelism in only one dimension. For example, in case of general matrix–vector
multiplication (GEMV) [15] there is a potential of parallelism in two dimensions:
row and column. For exploiting parallelism in the row dimension, the input matrix is
split horizontally in chunks that are in parallel multiplied with the input vector; the
obtained results are combined to the final result by using concatenation. To exploit
parallelism in the column dimension, the matrix is split in vertical chunks: each of
these chunks is multiplied with the corresponding chunk of the input vector, and the
results are finally combined by using vector addition. If we treat GEMV as an LH,
then only one dimension of parallelism can be captured. However, modern multi- and
many-core devices, such as multi-core CPUs and Graphics Processing Units (GPUs)
require massive parallelization in multiple dimensions in order to utilize their full
performance potential.

In this paper, we extend the LH concept to multi-dimensional homomorphisms
(MDHs), in order to capture parallelism inmultiple dimensions.We introduce formally
a new parallel pattern (a.k.a. algorithmic skeleton [8]), named md_hom, based on the
MDH concept, which is suitable to conveniently express a broad class of functions.
For example, the md_hom pattern subsumes common parallel patterns such as map
and reduce, and also more complex functions built by composing and nesting such
patterns. We prove formally that each MDH can be expressed by using md_hom and
vice versa.

We develop a generic implementation schema for md_hom in form of an
OpenCL [14] pseudocode that targets modern multi- and many-core devices. For this,
we formally decompose its computations in independent parts that together represent a
semantically-sound decomposition schema for OpenCL. The formal approach makes
our code correct by construction and guarantees, for example, the correctness of the
usually error-prone index expressions.

Our implementation schema is developed as parametrized in so-called tuning
parameters, e.g., the number of threads. Different configurations of tuning param-
eters induce semantically-equal but differently-optimized code variants. We use these
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tuning parameters to automatically optimize our code by performing an automatized
search (a.k.a. auto-tuning) on the parameter space.

To demonstrate the runtime performance of our executable OpenCL code, we use
the example of general matrix–vector multiplication (GEMV)—a linear algebra rou-
tine widely used in the area of deep learning [12]. We compare the performance of our
GEMV implementationwith highly tuned, high-performance libraries on two different
processor architectures—Intel MKL in case of the CPU and NVIDIA cuBLAS for the
GPU. Moreover, we compare to the auto-tunable OpenCL BLAS library CLBlast [3]
which has proven to have competitive performance compared to vendor implementa-
tions (e.g., cuBLAS) on different device architectures and for different input sizes [22].
Our experiments demonstrate a competitive and sometimes even better performance
of our implementation than provided by the reference implementations.

The structure of the paper is as follows. In Sect. 2, we define the class of MDHs as
an extension of LHs and introduce the pattern md_hom for which we prove formally
that each MDH can be expressed by using this pattern. An OpenCL implementation
schema for the md_hom pattern, based on a mathematically sound decomposition
schema, is presented in Sect. 3 and evaluated by using the example of GEMV in
Sect. 4. In Sect. 5, we compare our approach to related work, and we conclude in
Sect. 6.

2 Multi-dimensional Homomorphisms and the md_hom Pattern

In this section, we introduce multi-dimensional homomorphisms (MDHs)—a broad
class of functions that can be efficiently parallelized—and we define the programming
pattern md_hom to conveniently express MDH functions.

2.1 Multi-dimensional Homomorphisms

To define multi-dimensional homomorphisms (MDHs), we first introduce multi-
dimensional arrays (MDAs)—the data type on which MDHs operate.

Definition 1 (Multi-Dimensional Array) Let T be an arbitrary type (e.g, float),
d ∈ N a natural number and (N1, . . . , Nd) ∈ N

d a tuple of d natural numbers.
A multi-dimensional array (MDA) of dimensionality d, size (N1, . . . , Nd) and with
elements in T is a function with the following signature:

[1, N1] × · · · × [1, Nd ] → T

We use a syntax similar to C++ for denoting MDAs, i.e., we write

– T [N1] . . . [Nd ] for the set of all MDAs of dimension d, size (N1, . . . , Nd) and
elements in T , and

– a[i1] . . . [id ] for the element of the MDA a ∈ T [N1] . . . [Nd ] that is accessed by
the indices i1, . . . , id .
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Definition 2 (MDA Concatenation) The concatenation in the k-th dimension of two
d-dimensional MDAs, k ≤ d, which have the same size in all dimensions, except
probably in dimension k, is defined as binary function:

++k : T [N1] . . . [P↑
k

] . . . [Nd ] × T [N1] . . . [Q
↑
k

] . . . [Nd ]

→ T [N1] . . . [P + Q
↑
k

] . . . [Nd ]

where

(a ++k b)[i1] . . . [id ] =
{
a[i1] . . . [id ], if ik ≤ P

b[i1] . . . [ik − P] . . . [id ], otherwise

Definition 3 (Multi-Dimensional Homomorphism) Let T and T ′ be two arbitrary
types. A function h : T [N1] . . . [Nd ] → T ′ on d-dimensional MDAs is called a
multi-dimensional homomorphism (MDH) of the dimensionality d iff there exist com-
bine operators�1, . . . ,�d : T ′×T ′ → T ′, such that for each k ∈ [1, d] and arbitrary,
concatenated input MDA a ++k b:

h(a ++k b) = h(a) �k h(b)

In words: the value of h on a concatenated MDA in dimension k can be computed
by applying h to the MDA’s chunks a and b and combining the results afterwards by
using the combine operator �k—we say the computation of h can be decomposed in
two parts in dimension k. Since the computations of h(a) and h(b) are independent
of each other, they can be performed in parallel.

We illustrate the definition for the case d = 2. For computing h on its complete
(concatenated) input MDA, we can

1. split it horizontally (i.e., in dimension 1) in chunksa1 andb1, apply h independently
to the chunks, and combine the results by operator �1 (Fig. 1a), or

2. split it vertically (i.e., in dimension 2) in chunks a2 and b2, apply h to the chunks,
and combine the results by operator �2 (Fig. 1b).

In contrast to the traditional LHs, whose computation can be decomposed in only
one dimension, MDHs allow for decomposition in several dimensions and thus (as we

(a) (b)

Fig. 1 Illustration of Definition 3 for d = 2
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Table 1 Examples of views

View Definition

pair_vv (v1, . . . , vN ), (w1, . . . , wN ) �→ ((v1, w1), . . . , (vN , wN ))

pair_mv

⎛
⎜⎝

m11 . . . m1N

.

.

.
. . .

.

.

.

mM1 . . . mMN

⎞
⎟⎠ ,

⎛
⎜⎝

v1
.
.
.

vN

⎞
⎟⎠ �→

⎛
⎜⎝

(m11, v1) . . . (m1N , vN )

.

.

.
. . .

.

.

.

(mM1, v1) . . . (mMN , vN )

⎞
⎟⎠

pair_mm

⎛
⎜⎝

m11 . . . m1K

.

.

.
. . .

.

.

.

mM1 . . . mMK

⎞
⎟⎠ ,

⎛
⎜⎝

m′
11 . . . m′

1N
.
.
.

. . .
.
.
.

m′
K1 . . . m′

K N

⎞
⎟⎠ �→

⎛
⎜⎝

a11 . . . a1N
.
.
.

. . .
.
.
.

aM1 . . . aMN

⎞
⎟⎠

where ai j = ((mi1,m′
1 j ) , . . . , (miK ,m′

K j ))

will see at the endof this section) enable amorefine-grainedparallelismwhich is highly
required to utilize the full performance potential of modern parallel architectures.

In the following, we present how three important BLAS routines [15] can be
expressed as MDHs: (1) dot which computes a dot-product, (2) gemv for com-
puting (general) matrix–vector multiplication and, (3) gemm for computing (general)
matrix–matrix multiplication. These routines differ slightly fromMDHs in their input
types: they operate on one or more vectors and/or matrices (i.e., 1- or 2-dimensional
MDAs) instead of a single MDA. For simplicity, we ignore that according to their
usual definitions [15], gemv and gemm also expect two scaling factors and allow to
optionally transpose the input matrix.

To adapt the routines’ input, we use views—functions that fuse several input param-
eters to one MDA.

Table 1 lists the three views that we use for expressing the BLAS routines asMDHs:
(1) pair_vv to fuse the two input vectors of dot, (2) pair_mv for gemv, and (3)
pair_mm for gemm. They perform pairing of two vectors, a matrix and a vector or
of two matrices, correspondingly.

Table 2 lists three MDHs: md_dot, md_gemv and md_gemm. We use these in
combination with the corresponding view to express dot, gemv and gemm:

– dot = md_dot ◦ pair_vv,
– gemv = md_gemv ◦ pair_mv,
– gemm = md_gemm ◦ pair_mm.

Here, operator ◦ denotes functional composition, i.e., ( f ◦ g )(x) = f (g(x)).
For example, to express gemv as an MDH, we use the view pair_mv to fuse

the (M × N ) input matrix and the input vector of size N—both of floating point
numbers—to one MDA with M pairs of floating point numbers in the dimension 1,
and N pairs in the dimension 2. The MDA is afterwards processed to the result vector
of size M by using the MDH md_gemv:

float[M][N ]︸ ︷︷ ︸
input matrix

, float[N ]︸ ︷︷ ︸
input vector

pair_mv→ float2[M][N ]︸ ︷︷ ︸
MDA

md_gemv→ float[M]︸ ︷︷ ︸
result vector
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Table 2 BLAS routines represented as MDH functions

MDH Definition

md_dot ( (v1, w1), . . . , (vN , wN )) �→ v1 ∗ w1 + . . . + vN ∗ wN

md_gemv

⎛
⎜⎝

(m11, v1) . . . (m1N , vN )

.

.

.
. . .

.

.

.

(mM1, v1) . . . (mMN , vN )

⎞
⎟⎠ �→

⎛
⎜⎝

m11 ∗ v1+ . . . +m1N ∗ vN
.
.
.

mM1 ∗ v1+ . . . +mMN ∗ vN

⎞
⎟⎠

md_gemm

⎛
⎜⎝

a11 . . . a1N
.
.
.

. . .
.
.
.

aM1 . . . aMN

⎞
⎟⎠ �→

⎛
⎜⎝

b11 . . . b1N
.
.
.

. . .
.
.
.

bM1 . . . bMN

⎞
⎟⎠

where ai j = ((mi1 , m′
1 j ) , . . . , (miK , m′

K j ))

and bi j = ( mi1 ∗ m′
1 j + . . . + miK ∗ m′

K j )

Table 3 Combine operators of
MDH functions

MDH �1 �2 �3

md_dot +
md_gemv ++1 +vec

md_gemm ++1 ++2 +mat

Table 3 shows the combine operators of the three MDHs from Table 2. Here, ++1
and ++2 denote MDA concatenation in the first and second dimension as defined in
Definition 2, and +vec and +mat are element-wise vector and matrix addition, corre-
spondingly. For example, in case of md_gemv, we can decompose its computation
in the first dimension by splitting its 2-dimensional input MDA in chunks of rows
and combine the results by using concatenation ++1, or in the second dimension by
splitting its input MDA in chunks of columns and use vector addition+vec to combine
the results. Note that md_dot is an 1-dimensional MDH with one combine operator,
while md_gemv and md_gemm are 2- or 3-dimensional and thus have 2 or 3 combine
operators, correspondingly.

So far, we have definedMDHs as functions whose computation can be decomposed
in two independent parts that can be computed in parallel. In general, an MDH’s
computation can be decomposed inmultiple parts by splitting its inputMDA in several
chunks to which we refer as partitioning.

Definition 4 (MDA Partitioning) Let a ∈ T [N1] . . . [Nd ] be an MDA of dimension
d and size (N1, . . . , Nd) and P = (P1, . . . , Pd) ∈ N

d a d-tuple of natural numbers
where Ni is divisible by Pi . The P-partitioning of a is the d-dimensional MDA

apart ∈ (T [ N1
P1

] . . . [ Nd
Pd

])[P1] . . . [Pd ]

of size (P1, . . . , Pd) which has as its elements d-dimensional MDAs of size
( N1
P1
, . . . ,

Nd
Pd
) where for all pk ∈ [1, Pk] and ik ∈ [1, Nk

Pk
]:
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Fig. 2 Partitioning of a 2-dimensional MDA

(apart[ p1] . . . [ pd ])[ i1] . . . [ id ] = a[ (p1 − 1) ∗ N1

P1
+ i1] . . . [ (pd − 1) ∗ Nd

Pd
+ id ]

We refer to P as partitioning schema for a, and to apart[p1] . . . [pd ] as a P-chunk
of a.

Notation 1 For a better readability, we write in the following

1. T [P1] . . . [Pd ]·[ N1
P1

] . . . [ Nd
Pd

] instead of (T [ N1
P1

] . . . [ Nd
Pd

] )[P1] . . . [Pd ], i.e., we first
state the number of chunks in each of the d dimensions P1, . . . , Pd and then the
number of elements per chunk: N1

P1
, . . . ,

Nd
Pd
, and

2. apart[p1] . . . [pd ] · [i1] . . . [id ] instead of (apart[p1] . . . [pd ] )[i1] . . . [id ] to reduce
the number of parentheses.

Figure 2 demonstratesMDApartitioning for a 2-dimensionalMDAa ∈ T [N1][N2]:
a is partitioned according to the partitioning schema P = (P1, P2) in (P1 ∗ P2)
P-chunks where each P-chunk comprises N1

P1
elements in the dimension 1 and N2

P2

elements in dimension 2, i.e., it is in T [ N1
P1

][ N2
P2

]. The P-chunks are arranged in an

MDA apart ∈ (T [ N1
P1

][ N2
P2

])[P1][P2] for which we write apart ∈ T [P1][P2].[ N1
P1

][ N2
P2

]
according to Notation 1.

Proposition 1 (MDH Decomposition) If h is a d-dimensional MDH with combine
operators �1, . . . ,�d , a is an input MDA of h and apart a P-partitioning of a for an
arbitrary partitioning schema P = (P1 . . . , Pd), then

h(a) = �1
p1∈[1,P1]

. . . �d
pd∈[1,Pd ]

h( apart[p1] . . . [pd ])

Here, �
i∈[1,N ]

a[i] denotes a[1] � . . . � a[N ] and �1
i∈[1,N1]

�2
j∈[1,N2]

a[i][ j] denotes

(a[1][1] �2 . . . �2 a[1][N2]) �1 . . . �1 (a[N1][1] �2 . . . �2 a[N1][N2]), etc.
Proof Follows by nested induction on d and P1, . . . , Pd . 
�

In words: to compute the MDH h on its complete input MDA a, we can apply
h independently to the P1 ∗ . . . ∗ Pd chunks comprised by a’s P-partitioning apart
and then combine the results in each of the d dimensions by using the corresponding
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combine operator.Note thatMDHsallow for a decomposition in up to N1∗. . .∗Nd parts
(by using P = (N1, . . . , Nd) as partitioning schema), while LHs can be decomposed
in only one dimension i and consequently in only Ni parts.

To decomposeMDHs for recent device architectureswhich are usually programmed
by using a layered thread hierarchy (such as in the OpenCL approach), we introduce
recursive MDA partitioning and, accordingly, recursive MDH decomposition.

Definition 5 (Recursive MDA Partitioning) Let a ∈ T [ N1] . . . [ Nd ] be a d-
dimensional MDA and (P1, . . . , Pn) a sequence of partitioning schemas where
Pi = (Pi

1 , . . . , P
i
d) and where

N j

P1
j ∗...∗Pi−1

j
is divisible by Pi

j , i.e.,

– P1 is a partitioning schema for a,
– P2 is a partitioning schema for the P1-chunks,
– P3 is a partitioning schema for the P2-chunks, and so on.

We refer to the sequence (P1, . . . , Pn) as n-fold recursive partitioning schema for a,
and to the MDA

apart ∈ T [ P1
1 ] . . . [ P1

d ]. . . . .[ Pn
1 ] . . . [ Pn

d ].[ N1
P1
1 ∗...∗Pn

1
] . . . [ Nd

P1
d ∗...∗Pn

d
]

that is obtained by partitioning a according to P1 and then partition each P1-chunk
further according to P2 and so on, as n-fold recursive (P1, . . . , Pn)-partitioning of a.

Figure 3 demonstrates a recursive partitioning of a 2-dimensional MDA a ∈
T [N1][N2] using a 2-fold partitioning schema (P1, P2). First, the MDA is partitioned
according to P1 in (P1

1 ∗ P1
2 ) P

1-chunks where each chunk comprises N1
P1
1
elements in

its first dimension and N2
P1
2
in its second. Afterwards, each of the P1-chunks is further

partitioned according to P2 in (P2
1 ∗ P2

2 ) P2-chunks where each chunk comprises
N1

P1
1 ∗P2

1
elements in its first dimension and N2

P1
2 ∗P2

2
elements in its second dimension.

Proposition 2 (Recursive MDH Decomposition) If h is a d-dimensional MDH with
combine operators �1, . . . ,�d , a is an input MDA of h and apart an n-fold recursive
(P1, . . . , Pn)-partitioning of a, then

Fig. 3 Partitioning of a 2-dimensional MDA by a 2-fold partitioning schema
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h(a) = �1
p11∈[1,P1

1 ]
. . . �d

p1d∈[1,P1
d ]

. . .

�1
pn1∈[1,Pn

1 ]
. . . �d

pnd∈[1,Pn
d ]

h( apart[ p11] . . . [ p1d ]. . . . .[ pn1 ] . . . [ pnd ])

Proof Follows from Proposition 1 by applying it n times. 
�
For example, the recursive decomposition of a 2-dimensional MDH h on an input

MDA a ∈ T [N1][N2] that is partitioned according to P = (P1, P2) (as depicted in
Fig. 3) is as follows:

h(a) = �1
p11∈[1,P1

1 ]︸ ︷︷ ︸
(4)

�2
p12∈[1,P1

2 ]︸ ︷︷ ︸
(3)

�1
p21∈[1,P2

2 ]︸ ︷︷ ︸
(2)

�2
p22∈[1,P2

2 ]︸ ︷︷ ︸
(1)

h( apart[ p11][ p12].[ p21][ p22])︸ ︷︷ ︸
(0)

In this representation, we first compute (0) by applying h to all P2-chunks. We then
combine the results of the chunks that are within the same P1-chunk in dimension 2
by using �2 and in dimension 1 by using �1, which represent the computations (1)
and (2). We obtain one result per P1-chunk, i.e., P1

1 ∗ P1
2 results; we combine these

analogously in both dimensions by using the corresponding combine operators, i.e.,
we perform computations (3) and (4).

2.2 The md_hom Pattern

A pattern (skeleton) is a higher-order function for which we can generate executable
program code. In this section, we introduce formally the new pattern md_hom and we
show that each MDH function can be conveniently expressed by using this pattern.

Definition 6 Let T and T ′ be two arbitrary types and d ∈ N a natural number. The
function md_hom with the signature

md_hom : ( T → T ′︸ ︷︷ ︸
f

, (T ′ × T ′ → T ′︸ ︷︷ ︸
�i

)i∈[1,d]) � (T [N1] . . . [Nd ] → T ′)︸ ︷︷ ︸
md_hom( f , (�1,...,�d ))

is a partial function (indicated by the � instead of→) that takes as its input a function
f : T → T ′ and a tuple of d further functions �i : T ′ × T ′ → T ′, i ∈ [1, d],
and yields a function md_hom( f , (�1, . . . ,�d)) which is defined on d-dimensional
MDHs as follows:

md_hom( f , (�1, . . . ,�d))(a) = �1
i1∈[1,N1]

. . . �d
id∈[1,Nd ]

f (a[i1] . . . [id ])
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for that we require the homomorphic property, i.e., for each i ∈ [1, d]:

md_hom( f , (�1, . . . ,�d))( a1 ++i a2) =
md_hom( f , (�1, . . . ,�d))(a1 ) �i md_hom( f , (�1, . . . ,�d))(a2 )

We refer to f as the scalar function ofmd_hom( f , (�1, . . . ,�d)) since it operates
on elements of T and to �1, . . . ,�d as its combine operators, correspondingly.

We define md_hom as a partial function since md_hom( f , (�1, . . . ,�d)) may
not be well defined for some scalar functions f and combine operators (�1, . . . ,�d).
For example, md_hom(id , (maxvec,+vec)), where id is the identity function and
maxvec is the element-wise maximum function on two vectors, is not well defined (the
homomorphic property is not met).

We define md_hom so that MDHs can be conveniently expressed by using this
pattern; we prove this in the following proposition.

Proposition 3 Let h : T [N1] . . . [Nd ] → T ′ be a d-dimensional MDH with com-
bine operators �1, . . . ,�d . Let further be f : T → T ′ the function with h(a) =
f ( a [1] . . . [1]︸ ︷︷ ︸

d-times

) for each a ∈ T [1] . . . [1]︸ ︷︷ ︸
d-times

. Then it holds:

h = md_hom( f , (�1, . . . ,�d))

Proof Follows from Proposition 1 for P = (N1, . . . , Nd). 
�
In words: to express an MDH by using md_hom, we only have to know the MDH’s

behavior f on scalar values and its combine operators�1, . . . ,�d . Note that the other
direction also holds: each function that is expressed by using md_hom is an MDH;
this follows from the homomorphic property in Definition 6.

Table 4 shows the md_hom representation for the MDHs md_dot, md_gemv and
md_gemm which we introduced in Table 2. For example, in case of md_gemv, the
input MDA consists of pairs of floating point numbers. The two elements of each pair
aremultiplied by using ∗ and the results are combined in theMDA’s two dimensions by
using the combine operators ++1 and +vec. Table 4 also lists md_hom representations
for two popular parallel patterns: map(f) which maps a user-defined function f to
each element of a vector, and reduce(⊕) which combines the elements of a vector
by using a binary operator ⊕.

Table 4 md_hom
representations of MDH
functions

MDH md_hom representation

md_dot md_hom( ∗ , (+))

md_gemv md_hom( ∗ , (++1,+vec))

md_gemm md_hom( ∗ , (++1,++2,+mat))

map(f) md_hom( f , (++1))

reduce( ⊕ ) md_hom( id , (⊕))

123



Int J Parallel Prog (2018) 46:101–119 111

3 OpenCL Implementation of the md_hom Pattern

In this section, we demonstrate how functions that are expressed by using the md_hom
pattern can be implemented efficiently in OpenCL which is portable across a wide
range of parallel architectures, e.g., multi-core CPU and GPU. The execution model
of OpenCL has 3 layers: (1) the programmer starts in parallel a user-defined number
of thread bundles—so-called work-groups (WGs), (2) each work-group comprises a
user-defined number of parallel threads to which OpenCL refers as work-items (WIs),
(3) each thread runs sequentially.

Let us consider an arbitrary instantiation of the md_hom pattern:

h = md_hom( f , (++1, . . . ,++dl ,�1, . . . ,�dr ))

whose first dl combine operators are concatenations and the remaining dr operators
are arbitrary. We consider concatenation as a combine operator specifically, since it
occurs in many important applications, e.g., in md_map, md_gemv and md_gemm
introduced in Sect. 2.

To parallelize the computation of h in OpenCL, we decompose it in independent
parts that we distribute to the different WGs andWIs. OpenCL allows to arrangeWGs
andWIs in up to three dimensions.Weuse dl+dr dimensions—one for each dimension
of our md_hom instantiation. In case that d is greater than three, we arrange the higher
dimensions in a row-major order in the third dimension. To be able to choose a suitable
number of WGs and WIs for a particular target device and input size, we introduce
them as parameters:

– NUM_WG_L_1 , . . . , NUM_WG_L_dl , NUM_WG_R_1 , . . . , NUM_WG_R_dr;
– NUM_WI_L_1 , . . . , NUM_WI_L_dl , NUM_WI_R_1 , . . . , NUM_WI_R_dr;

where the first line represents the number of WGs in the dl + dr dimensions, and the
second line represents the number of WIs per WG, correspondingly.

We decompose the computation of h according to Proposition 2 recursively in
independent parts that are computed by separate WGs and WIs. For this, we define
a 3-fold recursive partitioning schema POpenCL = (Pwg, Psq, Pwi) according to Def-
inition 5. This 3-fold schema directly reflects the 3-layer hierarchy of computations
in OpenCL described at the beginning of this section, as follows. We process Pwg-
chunks in parallel by WGs, Psq -chunks sequentially, and Pwi -chunks in parallel by
WIs, where
– Pwg = (NUM_WG_L_1, . . . ,NUM_WG_L_dl , NUM_WG_R_1, . . . ,NUM_WG_R_dr),
– Psq = (NUM_SQ_L_1, . . . ,NUM_SQ_L_dl , NUM_SQ_R_1, . . . ,NUM_SQ_R_dr),
– Pwi = (NUM_WI_L_1, . . . ,NUM_WI_L_dl , NUM_WI_R_1, . . . ,NUM_WI_R_dr)

and

NUM_SQ_L_i = Mi

NUM_WG_L_i ∗ NUM_WI_L_i
,

NUM_SQ_R_j = N j

NUM_WG_R_j ∗ NUM_WI_R_j
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Fig. 4 Memory accesses with and without Psq -chunks

Note that instead of partitioning the Pwg-chunks according to Pwi , we first partition
them according to Psq which we define so that each Psq -chunk comprises the number
of elements equal to the number of WIs per WG. This causes the Pwi -chunks to
comprise a single element which has the following advantage.Modern devices provide
high performance when a hardware-defined number of work-items (referred to as
warp size in NVIDIA GPUs and SIMD-width in Intel CPUs) with consecutive IDs
access in parallel consecutive memory regions. Such an access pattern enables GPUs
to fuse memory accesses (a.k.a. coalescing) and CPUs to automatically vectorize
computations [10,17].

Figure 4 (left) illustrates our approach: by partitioning according to Psq and then
according to Pwi , we ensure an advantageous access pattern that is depicted in the
figure for the example of a 1-dimensional Pwg-chunk of size 4, with 2 WIs per
WG. Both WIs iterate over the Psq -chunks and process in each iteration the num-
ber of elements equal to the number of WIs in a Psq -chunk (2 in the example). The
memory accesses of different WIs are colored differently; the numbers denote in
which iteration an element is accessed. For each Psq -chunk (and thus in each itera-
tion), different WIs access consecutive elements in parallel. For comparison, Fig. 4
(right) shows what happens without partitioning according to Psq : each WI processes
a range of consecutive elements which usually causes a poor performance on modern
devices.

Figure 5 shows the first decomposition schema that we obtain after applying Propo-
sition 2 to md_hom according to the partitioning schema POpenCL. The computations
are performed from right to left. We start in (0) by applying h to each Pwi -chunk.
The results for chunks within the same Psq -chunk are combined in the different
dimensions—computations (1) and (2)—so that we obtain one result per Psq -chunk.
These results are combined analogously, according to (3) and (4), to one result per Pwg

chunk. The final result is obtained by combining the results of different Pwg-chunks
according to (5) and (6).

We optimize this decomposition schema two-fold: (1) we utilize the fact that the
first dl combine operators are concatenations, and (2) we use commutativity of the
remaining combine operators, as follows.

1. We postpone the concatenations in (4) and (2) in Fig. 5, i.e., we perform the com-
putations in the order (0) → (1) → (3) → (5) → (2) → (4) → (6) for the
following reasons: (a) performing concatenations at the end allows a finer-grained
parallel combining of the intermediate results in the last dr dimensions since these
combinings can then be done in parallel on each single scalar, rather than on con-
catenated data, and (b) since combining elements by concatenation means writing
them consecutively in memory, we avoid wasting private and local memory: the
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Fig. 5 OpenCL decomposition schema for md_hom

results of different WIs and WGs are concatenated to the final result in the global
memory. The correctness of this transformation is ensured by the following propo-
sition which we formulate for simplicity for the 2-dimensional case—it follows
from Proposition 2 and can be generalized to an arbitrary dimensionality:

Proposition 4 Let md_hom( f , (++1,�)) be an arbitrary 2-dimensional instantia-
tion of the md_hom pattern. It holds:

++1
i1∈[1,N1]

�
i2∈[1,N2]

++3
i3∈[1,N3]

�
i4∈[1,N4]

++5
i5∈[1,N5]

�
i6∈[1,N6]

a[ i1][ i2].[ i3][ i4].[ i5][ i6]
= ++1

i1∈[1,N1]
++3

i3∈[1,N3]
++5

i5∈[1,N5]
�

i2∈[1,N2]
�

i4∈[1,N4]
�

i6∈[1,N6]
a[ i1][ i2].[ i3][ i4].[ i5][ i6]

for an arbitrary a ∈ T [ N1][ N2].[ N3][ N4].[ N5][ N6].

2. After optimization 1), we perform the computations (1) → (3). Since the combine
operators �1, . . . ,�dr are usually commutative (such as those in Table 3), we can
swap the computations which has the following advantage. In the order (1) → (3),
we combine the results of the different WIs in each iteration of (3). In the order
(3) → (1), in each iteration, a WI combines its result with that of the iteration
before—computation (3)—such that computation (1) is performed only once.

We present our optimized implementation schema for md_hom as an OpenCL
pseudo-code, based on the schema in Fig. 5. It comprises two kernels executed con-
secutively: the first kernel performs the computation of (0) → (3) → (1), and the
second kernel computes (5) → (2) → (4) → (6).
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Listing 1 shows the OpenCL pseudo-code of the first kernel. The WGs process
in parallel different Pwg-chunks, and the WIs process different Pwi -chunks. For this,
we get in line 6 − 10 the IDs of the corresponding Pwg-chunks and Pwi -chunks.
We consider OpenCL dimensions in reverse order, i.e., OpenCL’s dimension d is
our dimension 1 and so on, for the following reason. OpenCL applications ben-
efit from accessing consecutive memory regions by WIs with consecutive IDs in
the first dimension. However, in C-style programming languages, elements of multi-
dimensional arrays are stored in the row-major order. The reordering of IDs enables
high-performance accesses to the MDA’s elements in a particular dimension by WIs
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with consecutive IDs in that dimension.Note thatwhileOpenCLstarts counting indices
from 0, we count from 1 for a better readability of our formulas.

In line 19–25,we iterate sequentially over the Psq -chunks and apply in each iteration
the scalar function f to the element of the corresponding Pwi -chunk (line 28) which
represents the computation (0) in Fig. 5. Here, a_part is the POpenCL-partitioning of
the input array a. We combine WIs’ results for different iterations in line 23–25 (over
the Psq chunks in the last dr dimensions) in private memory due to its high throughput,
using the corresponding combine operators�dr , . . . ,�1 (line 28-30)— this represents
computation (3). The combined result is then stored in the local memory (line 34)
where it can be accessed by all WIs of the same WG. Afterwards, the computation
(1) is performed: the WIs’ results are combined step-by-step in the last dr dimensions
(line 39); this is done in parallel by all WIs of a WG cooperatively (line 40–46). In
each of the NUM_SQ_L_1 ∗ · · · ∗ NUM_SQ_L_dl iterations (line 19–20), we obtain
one combined result for the WIs with an ID equal to 1 in the last dr dimensions; these
results are stored in the global memory (line 50).

The described computations produce NUM_WG_R_1 ∗ . . . ∗ NUM_WG_R_dr results
that have to be combined according to (5) in Fig. 5. Since OpenCL does not allow
synchronization between different WGs, this is performed in a second kernel that we
start after the first kernel with only one WG in the last dr dimensions. The second
kernel’s code is similar to the first kernel of Listing 1, but the computation of f is not
performed. Since we start only one WG in the last dr dimensions, no synchronization
is required between WGs. The second kernel’s result is stored consecutively in the
global memory, which corresponds to the concatenations in (2), (4) and (6).

Note that the OpenCL code of the implementation schema in Listing 1 is
generic in the parameters Mi,Nj and NUM_WG_L_i, NUM_WG_R_j, NUM_WI_L_i
NUM_WI_R_j for i ∈ [1, dl ] and j ∈ [1, dr ]. The parameters Mi and Nj represent
the input size which is prescribed by the input and thus cannot be changed. However,
the other parameters are tuning parameters, i.e., different parameter values lead to
semantically-equal but differently optimized variants of code. The tuning parameters
enable customizing the parallelism granularity of our implementation for the specific
characteristics of the target device and input size by choosing appropriate numbers of
WGs and WIs.

To determine the most suitable tuning parameter values, we use the OpenTuner
framework [2]—a popular auto-tuning tool. We apply OpenTuner to our implementa-
tion with the given input size (i.e., M_i, N_j) and the corresponding range of values
for each tuning parameter. For md_gemv (matrix–vector multiplication), which we
use for evaluation in Sect. 4, auto-tuning takes a time of 2 seconds for the CPU and 7
seconds for the GPU. In comparison, CLTune [16] has a longer search time for tuning
CLBlast’s routine xgemv_fast: on average 17 seconds for the CPU and 7 seconds
for the GPU. This is arguably due to the efficacy of the OpenTuner which combines
various search techniques to reduce tuning time.

Auto-tuning causes an additional one-time overhead for each combination of device
and input size, but it improves kernels’ performance. It is especially beneficial to auto-
tune if an application calls a kernel multiple times for the same device and input size.
For example, in the application field of deep learning, the kernel for computing GEMV

123



116 Int J Parallel Prog (2018) 46:101–119

is calledmany times—106 andmore [12]—on the same input size, making auto-tuning
time negligible.

To achieve the input type compatibility between our md_hom and particular appli-
cations as presented in the literature, we use views (see Sect. 2) implemented as
C preprocessor macros. For example, our md_gemv (matrix–vector multiplication)
operates on a single MDA while the popular implementations of matrix–vector mul-
tiplication usually operate on a matrix and a vector. The compatibility is ensured by
using the view pair_mv from Table 1. Let mat be an arbitrary M × N input matrix,
vec an arbitrary input vector of size N and a ∈ float2[M][N ] the view’s output
MDA of pairs of floating point numbers, then we implement pair_mv using the
following macro:

#define a(i,j,pi) ((pi == 1) ? mat[(i − 1) ∗ N + j − 1]
: vec[j − 1])

4 Experimental Results

We use the example of MDH md_gemv (matrix–vector multiplication) for evaluating
the performance of the auto-tuned OpenCL code that is implemented according to
our generic schema in Listing 1. We compare our implementation with the currently
fastest (as shown in [21,22]), hand-tuned vendor implementations of the BLAS routine
gemv, each optimized for a particular device architecture:

1. the cblas_sgemv function of the Intel MKL library [11] on an Intel Xeon E5-
1620 CPU;

2. the cublasSgemv function of the NVIDIA cuBLAS library [18] on an NVIDIA
Tesla K20c GPU.

In addition, we compare our implementation on both architectures—CPUandGPU—
to the routine xgemv_fast of the auto-tunable state-of-the-art OpenCL BLAS
library CLBlast [3]; it has competitive performance compared to vendor implementa-
tions (e.g., cuBLAS) on different device architectures and for different input sizes [22].
We use CLBlast’s auto-tuner CLTune to tune xgemv_fast for the target device and
input size.

In all experiments, we measure the pure computation time, using the OpenCL
profiling API to take the runtime of our OpenCL application. For the reference imple-
mentations by Intel and NVIDIA, we use the C++ Chrono library and NVIDIA
nvprof profiling tool, correspondingly; for CLBlast we use its profiling API. In
each experiment, we report the median time of 100 runs.

Figure 6 shows our experimental results on the CPU (left) and GPU (right) for three
different sizes of the input matrix: 214 × 214 (square matrix), 210 × 218 (wide matrix)
and 218 × 210 (tall matrix). For each input size, we show the runtime of our OpenCL
md_gemv implementation (white), the vendor implementations MKL for the CPU
(light grey) and cuBLAS for the GPU (dark grey) respectively, and the runtime for
CLBLast (black). We observe a slightly better performance of our implementation
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Fig. 6 Runtime of matrix–vector multiplication (GEMV) on Intel CPU (left) and NVIDIA GPU (right)
for different matrix shapes

compared to the hand-tuned code by Intel and NVIDIA which are developed to yield
a good performance on average for various input sizes, while we strive for highest
performance for each individual input size.

In comparison to CLBlast, we achieve in most cases a significantly better perfor-
mance. This is due to the fact that we parallelize in both dimensions of the input MDA
while CLBlast parallelizes in only one dimension.

5 Related Work

Ourwork has been inspired by, and it enhances the previous research in the area. In [4],
abide-tree homomorphisms are studied on two-dimensional arrays. In comparison to
them, we extend the homomorphism theory for arrays to arbitrary dimensionality,
which enables a more fine-grained parallelism as required by modern parallel devices.
Moreover, we develop an executable implementation schema in OpenCL, rather than a
composition of functional building blocks such as map and reduce that would need
a further effort on efficient parallelization. The approaches [9,13] study computations
on arbitrary dimensional MDAs with focus on CPU architectures while we target all
OpenCL-capable devices, i.e., also GPUs.

In [21], starting from a high-level pattern expression, a search space of different,
semantically-equal implementations is generated and explored for a specific hardware
by using a search engine. We follow an alternative approach in order to avoid large
search spaces and, consequently, time-intensive search space exploration: we generate
a parametrized implementation which is then optimized for specific devices and input
sizes by tuning a small set of parameters. Moreover, we provide an arguably simpler
high-level abstraction: e.g., we express matrix multiplication by using the md_hom
pattern and a corresponding view, while the related work uses four different patterns
in combination with lambda expressions, pattern composition and nesting [22].

There are several parallel pattern libraries such as SkelCL [20], Muesli [6],
SkePU [5] and FastFlow [1] for simplifying parallel programming: they generate
low-level OpenCL or CUDA code from high-level expressions. While we consider
optimizations for different devices, SkelCL and Muesli are optimized towards par-
ticular architectures. The optimizations in SkePU are, to the best of our knowledge,
not applicable for their MapArray pattern which is required, for example, to express
matrix–vector multiplication. FastFlow provides a general parallel pattern—Loop-of-
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Stencil-Reduce—which is optimized for stencil computations that are performed in
a loop; however, linear algebra routines such as matrix–vector multiplication are not
considered.

Whilewe express the threeBLAS routinesdot,gemv andgemmbyusing solely the
md_hom pattern and a corresponding view, the aforementioned related work requires
for that various specific patterns. For example, in [5], pattern MapReduce( f,⊕)—
an optimized implementation of map( f ) composed with reduce(⊕)—is required to
express the routine dot, and pattern MapArray—a variant of the map pattern which
produces a result from two input vectors—is used to express gemv. In [20], gemm is
expressed by using allPairs(⊕)—a pattern that applies the binary function ⊕ to
each combination of rows and columns of two inputmatrices. For this, the composition
of two further patterns—zip(∗) andreduce(+)—is nested inallPairs. All these
patterns in the related work have to be implemented and optimized specifically.

Sorenson [19] and Xu et al. [23] present CUDA implementations for matrix–vector
multiplication that are optimized by using auto-tuning. In contrast to our work, both
implementations are restricted to NVIDIA GPUs.

6 Conclusion

In this paper, we present a multi-dimensional extension of the homomorphism concept
and propose a new parallel pattern md_hom based on this extension. We show that
md_hom is convenient for expressing a broad class of applications, and we develop
a correct-by-construction OpenCL implementation schema for md_hom that targets
various modern multi- and many-core devices. The schema is optimized for the target
hardware and input size by using auto-tuning. To evaluate the runtime performance
of the OpenCL code generated according to our schema, we implement the example
of general matrix–vector multiplication (GEMV)—a BLAS routine widely used, e.g.,
for deep learning. We achieve a competitive or better performance than hand-tuned,
platform-specific BLAS libraries and the auto-tunable OpenCLBLAS library CLBlast
on two different parallel architectures—Intel CPU and NVIDIA GPU.
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