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Data-parallel computations, such as linear algebra routines and stencil computations, constitute one of the most
relevant classes in parallel computing, e.g., due to their importance for deep learning. Efficiently de-composing
such computations for the memory and core hierarchies of modern architectures and re-composing the
computed intermediate results back to the final result—we say (de/re)-composition for short—is key to achieve
high performance for these computations on, e.g., GPU and CPU. Current high-level approaches to generating
data-parallel code are often restricted to a particular subclass of data-parallel computations and architectures
(e.g., only linear algebra routines on only GPU or only stencil computations), and/or the approaches rely
on a user-guided optimization process for a well-performing (de/re)-composition of computations, which is
complex and error prone for the user.

We formally introduce a systematic (de/re)-composition approach, based on the algebraic formalism of
Multi-Dimensional Homomorphisms (MDHs). Our approach is designed as general enough to be applicable to
a wide range of data-parallel computations and for various kinds of target parallel architectures. To efficiently
target the deep and complex memory and core hierarchies of contemporary architectures, we exploit our
introduced (de/re)-composition approach for a correct-by-construction, parametrized cache blocking, and
parallelization strategy. We show that our approach is powerful enough to express, in the same formalism, the
(de/re)-composition strategies of different classes of state-of-the-art approaches (scheduling-based, polyhedral,
etc.), and we demonstrate that the parameters of our strategies enable systematically generating code that
can be fully automatically optimized (auto-tuned) for the particular target architecture and characteristics of
the input and output data (e.g., their sizes and memory layouts). Particularly, our experiments confirm that
via auto-tuning, we achieve higher performance than state-of-the-art approaches, including hand-optimized
solutions provided by vendors (such as NVIDIA cuBLAS/cuDNN and Intel oneMKL/oneDNN), on real-world
datasets and for a variety of data-parallel computations, including linear algebra routines, stencil and quantum
chemistry computations, data mining algorithms, and computations that recently gained high attention due to
their relevance for deep learning.
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1 Introduction
Data-parallel computations constitute one of the most relevant classes in parallel computing.
Important examples of such computations include linear algebra routines [Whaley and Dongarra,
1998], various kinds of stencil computations (e.g., Jacobi method and convolutions) [Hagedorn et al.,
2018], quantum chemistry computations [Kim et al., 2019], and data mining algorithms [Rasch et al.,
2019b]. The success of many application areas critically depends on achieving high performance
for their data-parallel building blocks, on a variety of parallel architectures. For example, highly
optimized linear algebra routines implementations combined with the computational power of
modern GPUs currently enable deep learning to significantly outperform other existing machine
learning approaches (e.g., for speech recognition and image classification).

Data-parallel computations are characterized by applying the same function (a.k.a scalar func-
tion) to each point in a multi-dimensional grid of data (a.k.a. array) and combining the obtained
intermediate results in the grid’s different dimensions using so-called combine operators.

Figures 1 and 2 illustrate data parallelism using as examples two popular computations: (1) linear
algebra routineMatrix-Vector multiplication (MatVec) and (2) stencil computation Jacobi (Jacobi1D).
In the case of MatVec, the grid is two-dimensional and consists of pairs, each pointing to one element
of the input matrix "8,: and the vector E: . To each pair, scalar function 5 ("8,: , E:) ∶= "8,: ∗ E:
(multiplication) is applied, and results in the 8-dimension are combined using combine operator
⊛1( (G1, . . . , G=) , (~1, . . . ,~<) ) ∶= (G1, . . . , G=,~1, . . . ,~<) (concatenation) and in :-dimension using
operator ⊛2( (G1, . . . , G=) , (~1, . . . ,~=) ) ∶= (G1 + ~1, . . . , G= + ~=) (point-wise addition). Similarly,
the scalar function of Jacobi1D is 5 (E8+0, E8+1, E8+2) ∶= 2 ∗ (E8+0 + E8+1 + E8+2) which computes the
Jacobi-specific function for an arbitrary but fixed constant 2; Jacobi1D’s combine operator ⊛1 is
concatenation. We formally define scalar functions and combine operators later in this article.

Achieving high performance for data-parallel computations is considered important in both
academia and industry but has proven to be challenging. In particular, achieving high performance
that is portable (i.e., the same program code achieves a consistently high level of performance across
different architectures and characteristics of the input/output data, e.g., their size and memory
layout) and in a user-productive way is identified as an ongoing, major research challenge. This is
because for high performance, an efficient (de/re)-composition of computations (illustrated in Figure
3 and discussed thoroughly in this article) is required to efficiently break down a computation for the
deep and complex memory and core hierarchies of state-of-the-art architectures, via efficient cache
blocking and parallelization strategies. Moreover, to achieve performance that is portable across
architectures, the programmer has to consider that architectures often differ significantly in their
characteristics [Sun et al., 2019]—depth of memory and core hierarchies, automatically managed
caches (as in CPUs) vs. manually managed caches (as in GPUs), and so on—which poses further
challenges on identifying an efficient (de/re)-composition of computations. Productivity is often
also hampered: state-of-the-art programming models (such as OpenMP [OpenMP, 2022] for CPU,
CUDA [NVIDIA, 2022g] for GPU, and OpenCL [Khronos, 2022b] for multiple kinds of architectures)
operate on a low abstraction level; thereby, the models require from the programmer explicitly
implementing a well-performing (de/re)-composition, which involves complex and error-prone
index computations, explicitly managing memory and threads on multiple layers, and so on.

Current high-level approaches to generating data-parallel code usually struggle with addressing
in one combined approach all three challenges: performance, portability, and productivity. For
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Fig. 1. Data parallelism illustrated using the example Matrix-Vector Multiplication (MatVec).

Fig. 2. Data parallelism illustrated using the example Jacobi 1D (Jacobi1D).

example, approaches such as Halide [Ragan-Kelley et al., 2013], Apache TVM [Chen et al., 2018a],
Fireiron [Hagedorn et al., 2020a], and LoopStack [Wasti et al., 2022] achieve high performance
but incorporate the user into the optimization process—by requiring from the user explicitly
expressing optimizations in a so-called scheduling language—which is error prone and needs expert
knowledge about low-level code optimizations, thus hindering user’s productivity. In contrast,
polyhedral approaches, such as Pluto [Bondhugula et al., 2008b], PPCG [Verdoolaege et al., 2013],
and Facebook’s TC [Vasilache et al., 2019], are often fully automatic and thus productive but usually
specifically designed toward a particular architecture (e.g., only GPU as TC and PPCG, or only CPU
as Pluto) and thus not portable. Functional approaches, e.g., Lift [Steuwer et al., 2015], are productive
for functional programmers (e.g., with experience in Haskell [Haskell.org, 2022] programming,
which relies on small, functional building blocks for expressing computations), but the approaches
often have difficulties in automatically achieving the full performance potential of architectures
[Rasch et al., 2019a]. Furthermore, many of the existing approaches are specifically designed toward
a particular subclass of data-parallel computations only, e.g., only tensor operations (as LoopStack
and TC) or only matrix multiplication (as Fireiron), or they require significant extensions for
new subclasses (as Lift for matrix multiplication [Remmelg et al., 2016] and stencil computations
[Hagedorn et al., 2018]), which further hinders the productivity of the user.

In this article, we formally introduce a systematic (de/re)-composition approach for data-parallel
computations targeting state-of-the-art parallel architectures. We express computations via high-
level functional expressions (specifying what to compute), in the form of easy-to-use higher-order
functions, based on the algebraic formalism of Multi-Dimensional Homomorphisms (MDHs)1
[Rasch and Gorlatch, 2016].2 Our higher-order functions are capable of expressing various kinds of
data-parallel computations (linear algebra, stencils, etc.), in the same formalism and on a high level
of abstraction, independently of hardware and optimization details, thereby contributing to user’s
productivity.3 As target for our high-level expressions, we introduce functional low-level expressions
(specifying how to compute) to formally reason about (de/re)-compositions of data-parallel compu-
tations; our low-level expressions are designed such that they can be straightforwardly transformed
to executable program code (e.g., in OpenMP, CUDA, and OpenCL). To systematically lower our
high-level expressions to low-level expressions, we introduce a formally sound, parameterized
lowering process. The parameters of our lowering process enable automatically computing low-level
expressions that are optimized (auto-tuned [Balaprakash et al., 2018]) for the particular target
architecture and characteristics of the input/output data, thereby achieving fully automatically
1https://mdh-lang.org
2We thoroughly compare to the existing MDH work in Section 6.6.
3We consider as main users of our approach compiler engineers and library designers. Rasch et al. [2020b] show that our
approach can also take straightforward, sequential code as input, which makes our approach attractive also to end users.
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Fig. 3. Example (de/re)-composition of MatVec (Figure 1) on a 4 × 4 input matrix " and a 4-sized vector
E : (1) the de-composition phase (right part of the figure) partitions the concatenated input data into parts
(a.k.a. tiles in programming), where ++ denotes the concatenation operator; (2) to each part, scalar function
5 is applied in the scalar phase (bottom part of figure), which is defined for MatVec as multiplying matrix
element"8,: with vector element E: , resulting in elementF8,: ; (3) the re-composition phase (figure’s left part)
combines the computed parts to the final result, using combine operator ⊛1 for the first dimension (defined
as concatenation in the case of MatVec) and operator ⊛2 (point-wise addition) for the second dimension. All
basic building blocks (scalar function, combine operator, . . . ) and concepts (e.g., partitioning) are defined in
this article, based on algebraic concepts. For simplicity, this example presents a (de/re)-composition on two
layers only, and we partition the input for this example into parts that have straightforward, equal sizes.
Optimized values of semantics-preserving parameters (a.k.a. tuning parameters), such as the number of parts
and the application order of combine operators, are crucial for achieving high performance, as we discuss in
this article. Phases are arranged from right to left, inspired by the application order of function composition,
as we also discuss later.

high, portable performance. For example, we formally introduce parameters for flexibly choosing
the target memory regions for de-composed and re-composed computations and also parameters
for flexibly setting an optimized data access pattern.

We show that our high-level representation is capable of expressing various kinds of data-
parallel computations, including computations that recently gained high attention due to their
relevance for deep learning [Barham and Isard, 2019]. For our low-level representation, we show
that it can express the cache blocking and parallelization strategies of state-of-the-art parallel
implementations—as generated by scheduling approach TVM and polyhedral compilers PPCG
and Pluto—in one uniform formalism. Moreover, we present experimental results to confirm that
based on our parameterized lowering process in combination with auto-tuning, we are able to
achieve higher performance than the state of the art, including hand-optimized implementations
provided by vendors (e.g., NVIDIA cuBLAS and Intel oneMKL for linear algebra routines, and
NVIDIA cuDNN and Intel oneDNN for deep learning computations).
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Fig. 4. Overall structure of our approach (contributions highlighted in bold).

Summarized, we make the following three major contributions (illustrated in Figure 4):

(1) We introduce a functional High-Level Representation (HL REP), based on the algebraic
formalism of MDHs, that enables uniformly expressing data-parallel computations on a high
level of abstraction.

(2) We introduce a functional Low-Level representation (LL REP) that enables formally
expressing and reasoning about (de/re)-compositions of data-parallel computations; our
low-level representation is designed such that it can be straightforwardly transformed
to executable program code in state-of-practice parallel programming models, including
OpenMP, CUDA, and OpenCL.

(3) We introduce a systematic lowering process to fully automatically lower an expression in
our high-level representation to a device- and data-optimized expression in our low-level
representation, in a formally sound manner, based on auto-tuning.

Our three contributions aim to answer the following questions:

(1) How can data parallelism be formally defined, and how can data-parallel computations be uni-
formly expressed via higher-order functions that are agonistic from hardware and optimization
details while still capturing all information relevant for generating high-performing, executable
program code? (Contribution 1)

(2) How can optimizations for the memory and core hierarchies of state-of-the-art parallel archi-
tectures be formally expressed and generalized such that they apply to arbitrary data-parallel
computations? (Contribution 2)

(3) How can optimizations for data-parallel computations be expressed and structured so that
they can be automatically identified (auto-tuned) for a particular target architecture and
characteristics of the input and output data? (Contribution 3)

The rest of the article is structured as follows.We introduce our functional HL REP (Contribution 1)
in Section 2, and we show how this representation is used for expressing various kinds of popular
data-parallel computations. In Section 3, we discuss our functional LL REP (Contribution 2) which
is powerful enough to express the optimization decisions of state-of-practice approaches (e.g.,
scheduling approach TVM and polyhedral compilers PPCG and Pluto) and beyond. Section 4
shows how we systematically lower a computation expressed in our high-level representation
to an expression in our low-level representation, in a formally sound and auto-tunable manner
(Contribution 3). We present experimental results in Section 5, discuss related work in Section 6,
conclude in Section 7, and we present our ideas for future work in Section 8.

We provide a full version of this paper [Rasch, 2024] that contains details for the interested
reader that should not be required for understanding the basic concepts introduced in this article.
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Fig. 5. High-level representation (overview).

In particular, our full version contains formal details—for all the following definition, examples, and
theorems in Sections 2–4—whereas the formalism in this article is simplified for better illustration
and easier understanding of our basic ideas and concepts.

2 High-Level Representation for Data-Parallel Computations
We introduce functional building blocks, in the form of higher-order functions, that express data-
parallel computations on a high abstraction level. The goal of our high-level abstraction is to express
computations agnostic from hardware and optimization details, and thus in a user-productive
manner, while still capturing all information relevant for generating high-performance program
code. The building blocks of our abstraction are based on the algebraic MDH formalism which is
an approach toward formalizing data parallelism (we compare in detail to the existing work on
MDHs in Section 6.6).

Figure 5 shows a basic overview of our high-level representation. We express data-parallel
computations using exactly three higher-order functions only (a.k.a. patterns or skeletons [Gorlatch
and Cole, 2011] in programming terminology): (1) inp_view transforms the domain-specific input
data (e.g., a matrix and a vector in the case of matrix-vector multiplication) to aMulti-Dimensional
Array (MDA) which is our internal data representation and defined later in this section; (2) md_hom
expresses the data-parallel computation; (3) out_view transforms the computed MDA back to the
domain-specific data representation.

In the following, after informally discussing an introductory example in Section 2.1, we formally
define and discuss each higher-order function in detail in Section 2.2 (function md_hom) and Section
2.3 (functions inp_view and out_view). Sections 2.2 and 2.3 introduce and present the internals
and formal details of our approach, which are not relevant for the end user of our system—the user
only needs to operate on the abstraction level discussed in Section 2.1.

2.1 Introductory Example
Figure 6 shows how our high-level representation is used for expressing the example of matrix-
vector multiplication MatVec4 (Figure 1). Computation MatVec takes as input a matrix " ∈ ) �× 
and vector E ∈ ) of arbitrary scalar type5 ) and sizes � × (matrix) and  (vector), for arbitrary
but fixed positive natural numbers � ,  ∈ N.6 In the figure, based on index function (8, :) → (8, :)
and (8, :) → (:), high-level function inp_view computes a function that takes " and E as input
and maps them to a two-dimensional array of size � × (referred to as input MDA in the following
and defined formally in the next subsection). The MDA contains at each point (8, :) the pair
("8,: , E:) ∈ ) × ) comprising element "8,: within matrix " (first component) and element E:
within vector E (second component). The input MDA is then mapped via function md_hom to an
output MDA of size � × 1, by applying multiplication ∗ to each pair ("8,: , E:) within the input
4The expression in Figure 6 can also be extracted from straightforward, annotated sequential code [Rasch et al., 2020b,c].
5We consider as scalar types integers Z (a.k.a. int in programming), floating point numbers Q (a.k.a. float or double), any
fixed collection of types (a.k.a. record or struct), and so on. We denote the set of scalar types as TYPE in the following.
6We denote by N the set of positive natural number {1, 2, . . . }, and we use N0 for the set of natural numbers including 0.
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Fig. 6. High-level expression for Matrix-Vector Multiplication (MatVec).7

MDA, and combining the obtained intermediate results within the MDA’s first dimension via
++ (concatenation—also defined formally in the next subsection) and in second dimension via +
(point-wise addition). Finally, function out_view computes a function that straightforwardly maps
the output MDA, of size � ×1, to MatVec’s result vectorF ∈ ) � , which has scalar type) and is of size
� . For the example of MatVec, the output view is trivial, but it can be used in other computations
(such as matrix multiplication) to conveniently express more advanced variants of computations
(e.g., computing the result matrix of matrix multiplication as transposed, as demonstrated later).7

2.2 Function md_hom

Higher-order function md_hom is introduced by Rasch and Gorlatch [2016] to express MDH func-
tions—a formal representation of data-parallel computations—in a convenient and structured way.
In the following, we recapitulate the definition of MDHs and function md_hom, but in a more general
and formally more precise setting than done in the original MDH work.

To define MDH functions, we first need to introduce two central building blocks used in the
definition of MDHs: (1) MDAs—the data type on which MDHs operate and which uniformly
represent domain-specific input and output data (scalar, vectors, matrices, . . . ), and (2) combine
operators which we use to combine elements within a particular dimension of an MDA.

MDAs
Definition 1 (MDA). An MDA a that has dimensionality� ∈ N, size # ∈ N� , index sets �1, . . . , �� ⊂

N0, and scalar type ) ∈ TYPE is a function with the following signature:

a ∶ �1 × . . . × �� → )

We refer to �1 × . . . × �� → ) as the type of MDA a.

Notation 1. For better readability, we denote MDAs’ types and accesses to them using a notation
close to programming. We often write:

—a ∈ ) [ �1 , . . . , �� ] instead of a ∶ �1 × . . . × �� → ) to denote the type of MDA a;
—a ∈ ) [#1 , . . . , #� ] instead of a ∶ [0, #1)N0 ×⋯ × [0, #�)N0 → ) ;8
—a[ 81 , . . . , 8� ] instead of 0(81 , . . . , 8�) to access MDA a at position (81 , . . . , 8�).

Figure 7 shows six MDAs for illustration. For example, the left part of the figure shows MDA a

which is of type a ∶ �1 × �2 → ) , for �1 = {0, 1}, �2 = {0, 1, 2, 3}, and ) = Z (integer numbers). Note
that MDAs named a(1,1),a(1,2),a(2,1),a(2,2),a(2,3) in Figure 7 can be considered as parts (a.k.a. tiles
in programming) of MDA a: the MDA named a(1,1) represents the first row of a, MDA a(2,2) the
third column of a, etc. We formally define and use partitionings of MDAs in Section 3.

7 Our technical implementation takes as input a representation that is equivalent to Figure 6, expressed via straightforward
program code (see Rasch [2024], Section A.4).
8We denote by [!,* )N0 ∶= { = ∈ N0 ∣ ! ≤ = <* } the half-open interval of natural numbers (including 0) between ! (incl.)
and* (excl.).
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Fig. 7. MDA examples.

Combine Operators
A central building block in our definition of MDHs is a combine operator. Intuitively, we use a
combine operator to combine all elements within a particular dimension of an MDA. For example,
in Figure 1 (matrix-vector multiplication), we combine elements of the two-dimensional MDA via
combine operator concatenation in MDA’s first dimension and via operator point-wise addition in
the second dimension. Technically, combine operators are functions that take as input two MDAs
and yield a single MDA as their output.

We now define combine operators formally, and we illustrate this formal definition afterward
using the example operators concatenation and point-wise combination.

Definition 2 (Combine Operator). We refer to any binary function ⊛ of type

⊛ ∶ ) [ �1 , . . . , %↑
3

, . . . , �� ] × ) [ �1 , . . . , &
↑
3

, . . . , �� ] → ) [ �1 , . . . , '↑
3

, . . . , �� ]

as combine operator that has scalar type ) ∈ TYPE, dimensionality � ∈ N, and operating dimension
3 ∈ [1, �]N. We denote combine operator’s type concisely as CO.

Example 1 (Concatenation). We define concatenation (in dimension 3) as function ++3 of type

++3 ∶ ) [ �1 , . . . , %↑
3

, . . . , �� ] × ) [ �1 , . . . , &
↑
3

, . . . , �� ] → ) [ �1 , . . . , %∪⋅&
↑
3

, . . . , �� ]

and that is computed as

++3(a1,a2 )[ 81 , . . . , 83 . . . , 8� ] ∶=
⎧⎪⎪⎨⎪⎪⎩

a1[ 81 , . . . , 83 . . . , 8� ], 83 ∈ %
a2[ 81 , . . . , 83 . . . , 8� ], 83 ∈ &

The function is well defined when % and & are disjoint. We usually use an infix notation for ++3 ,
i.e., we write a1 ++3 a2 instead of ++3(a1,a2), and we refrain from ++3 ’s subscript 3 when it is clear
from the context.
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Fig. 8. MDH property illustrated on a two-dimensional example computation.

Example 2 (Point-Wise Combination). We define point-wise combination (in dimension 3), accord-
ing to a binary function ⊕ ∶ ) ×) → ) (e.g., addition), as functionÐ→● 3 of type

Ð→● 3 ∶ ) ×) → )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⊕

→ ) [�1, . . . , {0}
↑
3

, . . . , ��] ×) [�1, . . . , {0}
↑
3

, . . . , ��] → ) [�1, . . . , {0}
↑
3

, . . . , ��]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
point-wise combination (according to ⊕ )

that is computed as
Ð→● 3(⊕)(a1,a2 )[81, . . . , 0↑

3

, . . . , 8�] ∶= a1[81, . . . , 0↑
3

, . . . , 8�] ⊕ a2[81, . . . , 0↑
3

, . . . , 8�].

The input MDAs are assumed to have index set {0} in the operating dimension 3 ; otherwise,Ð→● (⊕)
is undefined. We refrain from Ð→● 3(⊕)’s subscript 3 when it is clear from the context. For brevity,
we often write ⊕ only, instead ofÐ→● 3(⊕), and we usually use an infix notation for ⊕.

MDHs
Now that we have defined MDAs (Definition 1) and combine operators (Definition 2), we can
define MDH functions. Intuitively, a function ℎ operating on MDAs is an MDH iff we can apply
the function independently to parts of its input MDA and combine the obtained intermediate
results to the final result using combine operators; this can be imagined as a typical divide-and-
conquer pattern. Compared to classical approaches, e.g., list homomorphisms [Bird, 1989; COLE,
1995; Gorlatch, 1999], a major characteristic of MDH functions is that they allow (de/re)-composing
computations in multiple dimensions (e.g., in Figure 1, in both the concatenation dimension as well
as in the point-wise addition dimensions), rather than being limited to a particular dimension only
(e.g., only the concatenation dimension or only point-wise addition dimension, respectively). We
will see later in this article that a multi-dimensional (de/re)-composition approach is essential to
efficiently exploit the hardware of modern architectures which require fine-grained cache blocking
and parallelization strategies to achieve their full performance potential.

Figure 8 illustrates the MDH property informally on a simple, two-dimensional input MDA.
In the left part of the figure, we split the input MDA in dimension 1 (i.e., horizontally) into two
parts a1 and a2, apply the MDH function ℎ independently to each part, and combine the obtained
intermediate results to the final result using the MDH function ℎ’s combine operator ⊛1. Similarly,
in the right part of Figure 8, we split the input MDA in dimension 2 (i.e., vertically) into parts and
combine the results via MDH function ℎ’s second combine operator ⊛2.

Figure 9 shows an artificial example in which we apply the MDH property (illustrated in Figure
8) recursively. We refer in Figure 9 to the part above the horizontal dashed lines as de-composition
phase and to the part below dashed lines as re-composition phase.
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10:10 A. Rasch

Fig. 9. MDH property recursively applied to a two-dimensional example computation.
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Definition 3 (MDH). A function

ℎ ∶ ) INP[ �1 , . . . , �� ] → ) OUT[ �1 , . . . , �� ]

is an MDH that has input scalar type ) INP ∈ TYPE, output scalar type ) OUT ∈ TYPE, and dimensionality
� ∈ N, iff for each 3 ∈ [1, �]N, there exists a combine operator ⊛3 (Definition 2), such that for any
concatenated input MDA a1++3 a2 in dimension 3 , the homomorphic property is satisfied:

ℎ( a1++3 a2 ) = ℎ(a1) ⊛3 ℎ(a2)

We denote the type of MDHs concisely as MDH.

MDHs are defined such that applying them to a concatenated MDA in dimension 3 can be
computed by applying the MDH ℎ independently to the MDA’s parts a1 and a2 and combining
the intermediate results afterward by using its combine operator ⊛3 , as also informally discussed
above.

Example 3 (Function Mapping). A simple example MDH is function mapping [González-Vélez
and Leyton, 2010], computed by higher-order function map(5 )(a), which applies a user-defined
scalar function 5 ∶ ) INP → ) OUT to each element within a �-dimensional MDA a. Function map(5 )
is an MDH whose combine operators are concatenation ++ in all of its � dimensions (Example 1).

Example 4 (Reduction). A further MDH function is reduction [González-Vélez and Leyton, 2010],
implemented as higher-order function red(⊕)(a), which combines all elements within a �-
dimensional MDA a using a user-defined binary function ⊕ ∶ ) ×) → ) . Reduction’s combine
operators are point-wise combinationÐ→● (⊕) in all dimensions (Example 2).

We show how Examples 3 and 4 (and particularly also more advanced examples) are expressed
in our high-level representation in Section 2.4, based on higher-order functions md_hom, inp_view,
and out_view (Figure 5) which we introduce in the following.

Higher-Order Function md_hom

We define higher-order function md_homwhich conveniently expresses MDH functions in a uniform
and structured manner. For this, we exploit that any MDH function is uniquely determined by its
combine operators and its behavior on singleton MDAs, as informally illustrated in the following
figure:

Here, 5 is the function on scalar values that behaves the same as ℎ when restricted to singleton
MDAs: 5 (a[81, . . . , 8�]) ∶= ℎ(a), for any MDA a ∈ ) [{81}, . . . , {8�}] consisting of only one element
that is accessed by (arbitrary) indices 81, . . . , 8� ∈ N0. For singleton MDAs, we usually use 5 instead
of ℎ, because 5 can be defined more conveniently by the user as ℎ (which needs to handle MDAs
of arbitrary sizes, and not only singleton MDAs as 5 ). Also, since 5 takes as input a scalar value
(rather than a singleton MDA, as ℎ), the type of 5 also becomes simpler, which further contributes
to simplicity.
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We now formally introduce function md_hom which uniformly expresses any MDH function, by
using only the MDH’s behavior 5 on scalar values and the MDH’s combine operators.

Definition 4 (Higher-Order Function md_hom). The higher-order function md_hom is of type

md_hom ∶ SF
´¸¶
5

× ( CO × . . . × CO )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⊛1 ... , ⊛�

→? MDH
´¸¶

md_hom( 5 , (⊛1,...,⊛�) )

where SF denotes the set of scalar functions of type ) INP → ) OUT. Function md_hom is partial
(indicated by→? instead of→), which we motivate after this definition. The function takes as input
a scalar function 5 and a tuple of �-many combine operators (⊛1, . . . ,⊛�), and it yields a function
md_hom( 5 , (⊛1, . . . ,⊛�) ) which is defined as

md_hom( 5 , (⊛1, . . . ,⊛�) )(a ) ∶= ⊛1
81∈�1

. . . ⊛�
8�∈��

5 ( a[81, . . . , 8�] ).

The combine operators’ underset notation denotes straightforward iteration.9 For md_hom, we
require by definition the homomorphic property (Definition 3), i.e., for each 3 ∈ [1, �]N, it must
hold:

md_hom( 5 , (⊛1, . . . ,⊛�) )( a1++3 a2 ) =
md_hom( 5 , (⊛1, . . . ,⊛�) )(a1 ) ⊛3 md_ hom( 5 , (⊛1, . . . ,⊛�) )(a2 ).

Using Definition 4, we express any MDH function uniformly via higher-order function md_hom
using only the MDH’s behavior 5 on scalar values and its combine operators ⊛1, . . . ,⊛� . The other
direction also holds: each function expressed via md_hom is an MDH function, because we require
the homomorphic property for md_hom.

Note that function md_hom is defined as partial function, because the homomorphic property is
not met for all potential combinations of combine operators, e.g., ⊛1 = + (point-wise addition) and
⊛2 = ∗ (point-wise multiplication). However, in many real-world examples, an MDH’s combine
operators are a mix of concatenations and point-wise combinations according to the same binary
function. The following lemma proves that any instance of the md_hom higher-order function for
such a mix of combine operators is a well-defined MDH function.

Lemma 1. Let ⊕ ∶ ) → ) be an arbitrary but fixed associative and commutative binary function on
scalar type) ∈ TYPE. Let further ⊛1, . . . ,⊛� be combine operators of which any is either concatenation
(Example 1) or point-wise combination according to binary function ⊕ (Example 2). It holds that
md_hom( 5 , (⊛1, . . . ,⊛�) ) is well defined.

Proof. Proved by Rasch [2024], Section B.5. �

MDH functions are defined (Definition 3) such that they uniformly operate on MDAs (Figure 5).
We introduce higher-order function inp_view to transform domain-specific inputs (e.g., a matrix
and a vector in the case of matrix-vector multiplication) to an MDA, and we use function out_view
to transform the output MDA back to the domain-specific data requirements (like storing it as a
transposed matrix in the case of matrix multiplication, or splitting it into multiple outputs as we
will see later with examples). We introduce both higher-order functions in the following.

9 We implicitly interpret the output scalar of function 5 as a singleton MDA, as combine operators operate on MDAs and
not on scalars (formal details provided by Rasch [2024], Definition 4).
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2.3 View Functions
In the following, after introducing Buffers (BUF) which represent domain-specific input and
output data in our approach (scalars, vectors, matrices, etc.), we define in Sections 2.3.1 and 2.3.2
the concepts of input views and output views—both are central building blocks in our approach.
We define input views as arbitrary functions that map a collection of user-defined BUFs to our
internal MDA data representation (Figure 5); higher-order function inp_view is then introduced to
conveniently compute an important class of input view functions that are relevant for expressing
real-world computations. Correspondingly, Section 2.3.2 defines output views as functions that
transform an MDA to a collection of BUFs, and higher-order function out_view is introduced to
conveniently compute important output views. Finally, we discuss in Section 2.3.3 the relationship
between higher-order function inp_view and out_view: we prove that both functions are inversely
related to each other, allowing arbitrarily switching between our internal MDA representation and
our domain-specific BUF representation (as required for our code generation process discussed
later).

Definition 5 (Buffer). A Buffer (BUF) b that has dimensionality � ∈ N0,10 size # ∶= {#1, . . . , #�} ∈
N� , and scalar type ) ∈ TYPE is a function with the following signature:

b ∶ [0, #1)N0 × . . . × [0, #�)N0 → ) ∪ {�}.

Here, we use � to denote the undefined value. We refer to [0, #1)N0 × . . . × [0, #�)N0 → ) ∪ {�}
as the type of BUF b, which we also denote as )#1×...×#� . Analogously to Notation 1, we write
b[ 81, . . . , 8� ] instead of b(81, . . . , 8�) to avoid a too heavy usage of parentheses.

In contrast to MDAs, a BUF always operates on a contiguous range of natural numbers starting
from 0, and a BUF may contain undefined values. These two differences allow straightforwardly
transforming BUFs to data structures provided by low-level programming languages (e.g., C arrays,
as used in OpenMP, CUDA, and OpenCL).

Note that in our generated program code (discussed later in Section 3), we implement MDAs
on top of BUFs, as straightforward aliases that access BUFs, so that we do not need to transform
MDAs to low-level data structures and/or store them otherwise physically in memory.

2.3.1 Input Views. We define input views as any function that compute an MDA from a collection
of (user-defined) BUFs. For example, in the case of MatVec, its input view takes as input two BUFs—a
matrix and a vector—and it yields a two-dimensional MDA containing pairs of matrix and vector
elements (illustrated in Figure 1). In contrast, the input view of Jacobi1D takes as input a single
BUF (representing a vector) only, and it computes an MDA containing triples of BUF elements
(Figure 2).

Definition 6 (Input View). An input view from �-many BUFs, � ∈ N, of arbitrary but fixed types

)
#

1
1 ×...×#

1
�1

1
, 1 ∈ [1, �]N, to an MDA of arbitrary but fixed type ) [�1, . . . , ��] is any function iv of

type:

iv ∶
�
×
1=1

)
#

1
1 ×...×#

1
�1

1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
BUFs

→? ) [ �1 , . . . , �� ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

MDA

We denote the type of iv as IV.

10We use the case � = 0 to represent scalar values (details provided in Rasch [2024], Section B.7).
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Fig. 10. Input view illustrated using the example MatVec.

Example 5 (Input View—MatVec). The input view of MatVec on a 1024×512matrix and 512-sized
vector (sizes chosen arbitrarily) is defined as

["(8, :) ]8∈[0,1024)N0 ,:∈[0,512)N0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

BUF (Matrix)

, [ E(:) ]:∈[0,512)N0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

BUF (Vector)

↦ ["(8, :), E(:) ]8∈[0,1024)N0 ,:∈[0,512)N0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

MDA

Example 6 (Input View—Jacobi1D). The input view of Jacobi1D on a 512-sized vector is defined
as

[ E(8) ]8∈[0,512)N0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

BUF (Vector)

↦ [ E(8 + 0), E(8 + 1), E(8 + 2) ]8∈[0,512−2)N0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

MDA

.

In the following, we introduce higher-order function inp_view which conveniently computes
important input views from user-defined index functions idx1,0 ∶ {0, 1, . . . } → {0, 1, . . . }, 1 ∈ [1, �]N,
0 ∈ [1,�1]N, in a uniform, structured manner. Here, � ∈ N represents the number of BUFs that the
computed input view will take as input, and �1 represents the number of accesses to the 1-th BUF
required for computing an individual MDA element.

In the case of MatVec (Figure 1), we use � ∶= 2 because MatVec has two input BUFs: a matrix
" (the first input of MatVec and thus identified by 1 = 1) and a vector E (identified by 1 = 2). For
the number of accesses, we use for the matrix �1 ∶= 1, as one element is accessed within matrix
" to compute an individual MDA element—matrix element"[8, :] for computing MDA element
at position (8, :). For the vector, we use �2 ∶= 1, as the single element E[:] is accessed within
the vector. The index functions of MatVec are idx1,1(8, :) ∶= (8, :) (used to access the matrix) and
idx2,1(8, :) ∶= (:) (used for the vector).

In contrast, for Jacobi1D (Figure 2), we use � ∶= 1 because Jacobi1D has vector E as its only
input, and we use �1 ∶= 3 because the vector is accessed three times to compute an individual MDA
element at arbitrary position 8: first access E[8 + 0], second access E[8 + 1], and third access E[8 + 2].
The index functions of Jacobi1D are idx1,1(8) ∶= (8 + 0), idx1,2(8) ∶= (8 + 1), and idx1,3(8) ∶= (8 + 2).

Figures 10 and 11 use the examples MatVec and Jacobi1D to informally illustrate how function
inp_view uses index functions to compute input views. In the two figures, we use domain-specific
identifiers for better clarity: in the case of MatVec, we use for its two input BUFs the identifiers"
and E instead of b1 and b2, as well as identifiers 8 and 9 instead of 81 and 82 for index variables; for
Jacobi1D, we use identifier E instead of b1 and 8 instead of 81.
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Fig. 11. Input view illustrated using the example Jacobi1D.

Definition 7 (Higher-Order Function inp_view). Function inp_view is of type

inp_view ∶ (
�
×
1=1
´¸¶
Buffer

�1×
0=1
´¸¶
Access

IDX-FCT
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Index Function: idx1,0

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Index Functions: idx1,1,...,idx�,��

→ IV
´¸¶

Input View: iv

and it is defined as

(idx1,0)1∈[1,�]N,0∈[1,�1]N
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Index Functions

↦ (b1, . . . , b�
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

BUFs

) iv↦ a
´¸¶
MDA

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Input View

for

a[81, . . . , 8�] ∶= (a1,0[81, . . . , 8�] )1∈[1,�]N,0∈[1,�1]N

and

a1,0[81, . . . , 8�] ∶= b1[ idx1,0(81, . . . , 8�) ]

Higher-order function inp_view takes as input a collection of index functions of types IDX-FCT,
and it computes an input view of type IV (Definition 6) based on the index functions, as illustrated
in Figures 10 and 11.

Note that function inp_view is not capable of computing every kind of input view function
(Definition 6). For example, inp_view cannot be used for computing MDAs that are required for
expressing computations on sparse data formats [Hall, 2020], because such MDAs need dynamically
accessing BUFs. This limitation of inp_view can be relaxed by generalizing our index functions
toward taking additional, dynamic input arguments, which we consider as future work (as outlined
in Section 8).
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Fig. 12. Output view illustrated using the example transposed matrix multiplication.

Notation 2 (Input Views). For better readability, we use the following notation for the two-
dimensional structure of index functions taken as input by function inp_view, inspired by Lattner
et al. [2021]:

inp_view( ID1 ∶ idx1,1 , . . . , idx1,�1 , . . . , ID� ∶ idx�,1 , . . . , idx�,��
)

Here, ID1, . . . , IDB denote arbitrary, user-defined identifiers (e.g., ID1 =“M” and ID2 =“v” for MatVec).

Example 7. Function inp_view is used for MatVec and Jacobi1D (in Notation 2) as follows:

MatVec ∶ inp_view( M: (8, :) ↦ (8, :)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a=1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b=1

, v: (8, :) ↦ (:)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a=1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b=2

)

Jacobi1D ∶ inp_view( v: (8) ↦ (8 + 0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

0=1

, (8) ↦ (8 + 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

0=2

, (8) ↦ (8 + 2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

0=3
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1=1

)

2.3.2 Output Views. An output view is the counterpart of an input view: in contrast to an input
view which maps BUFs to an MDA, an output view maps an MDA to a collection of BUFs. In
the following, we define output views, and we introduce higher-order function out_view which
computes output views in a structured manner (analogously to function inp_view for input views).

Figures 12 and 13 illustrate output views informally using the examples transposed Matrix
Multiplication and Double Reduction.

In the case of transposed matrix multiplication (Figure 12), the computed output MDA (the
computation of matrix multiplication is presented later and not relevant for our following consid-
erations) is stored via an output view as a matrix in a transposed fashion, using index function
(8, 9, 0) ↦ ( 9, 8). Here, the MDA’s third dimension (accessed via index 0) represents the so-called re-
duction dimension of matrix multiplication, and it contains only one element after the computation,
as all elements in this dimension are combined via addition.

For double reduction (Figures 13), we combine the elements within the vector twice—once using
operator ⊕ (e.g., ⊕ = + addition) and once using operator ⊗ (e.g, ⊗ = ∗ multiplication). The final
outcome of double reduction is a singleton MDA containing a pair of two elements that represent
the combined vector elements (e.g., the elements’ sum and product). We store this MDA via an
output view as two individual scalar values, using index functions (0) ↦ ()11 for both pair elements.

11The empty braces denote accessing a scalar value (details provided by Rasch [2024], Section B.7).
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Fig. 13. Output view illustrated using the example double reduction.

Definition 8 (Output View). An output view from an MDA of arbitrary but fixed type) [�1, . . . , ��]

to �-many BUFs, � ∈ N, of arbitrary but fixed types )
#

1
1 ×...×#

1
�1

1
, 1 ∈ [1, �]N, is any function ov of

type:

ov ∶ ) [ �1 , . . . , �� ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

MDA

→?
�
×
1=1

)
#

1
1 ×...×#

1
�1

1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
BUFs

We denote the type of ov as OV.

Example 8 (Output View—MatVec). The output view of MatVec computing a 1024-sized vector
(size is chosen arbitrarily), of integers Z, is defined as

[F(8) ]8∈[0,1024)N0 ,:∈{0}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

MDA

↦ [F(8) ]8∈[0,1024)N0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

BUF (Vector)

Example 9 (Output View—Jacobi1D). The output view of Jacobi1D computing a (512− 2)-sized
vector is defined as

[F(8) ]8∈[0,512−2)N0 ,:∈{0}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

MDA

↦ [F(8) ]8∈[0,512−2)N0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

BUF (Vector)

We define higher-order function out_view formally as follows.

Definition 9 (Higher-Order Function out_view). Function out_view is of type

out_view ∶
�
×
1=1
´¸¶
Buffer

�1×
0=1
´¸¶
Access

IDX-FCT
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Index Function: idx1,0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Index Functions: idx1,1,...,idx�,��

→ OV
´¸¶

Output View: ov

which differs from inp_view’s type only in mapping index functions to OV (Definition 8), rather
than IV (Definition 6). Function out_view is defined as

(idx1,0)1∈[1,�]N,0∈[1,�1]N
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Index Functions

↦ a
´¸¶
MDA

ov↦ (b1, . . . , b�
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

BUFs

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Output View

for

b1[ idx1,0(81, . . . , 8�) ] ∶= a1,0[81, . . . , 8�]
and

(a1,0[81, . . . , 8�] )1∈[1,�]N,0∈[1,�1]N ∶= a[81, . . . , 8�]

ACM Transactions on Programming Languages and Systems, Vol. 46, No. 3, Article 10. Publication date: October 2024.



10:18 A. Rasch

i.e., a1,0[81, . . . , 8�] is the element at point 81, . . . , 8� within MDA a that belongs to the 0-th access
of the 1-th BUF. We set b1[ 91, . . . , 9�1

] ∶= � (symbol � denotes the undefined value) for all BUF
indices which are not in the function range of the index functions.

Note that the computed output view ov is partial (indicated by→? in Definition 8), because for
non-injective index functions, it must hold idx1,0(81, . . . , 8�) = idx1,0′(8′1, . . . , 8′�) ⇒ a1,0[81, . . . , 8�] =
a1,0′[8′1, . . . , 8′�] which may not be satisfied for each potential input MDA of the computed view.

Notation 3 (Output Views). Analogously to Notation 2, we denote out_view for a particular
choice of index functions as

out_view( ID1 ∶ idx1,1 , . . . , idx1,�1 . . . , ID� ∶ idx�,1 , . . . , idx�,��
)

Example 10. Function out_view is used for MatVec and Jacobi1D (in Notation 3) as follows:

MatVec: out_view( w: (8, :) ↦ (8)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a=1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b=1

) Jacobi1D: out_view( w: (8) ↦ (8)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

0=1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1=1

)

2.3.3 Relation between View Functions. We use view functions to transform data from their
domain-specific representation (represented in our formalism as BUFs, Definition 5) to our internal,
MDA-based representation (via input views) and back (via output views), as also illustrated in
Figure 5. In our implementation presented later, we aim to access data uniformly in the form of
MDAs, thereby being independent of domain-specific data representations. However, we aim to
store the data physically in the domain-specific format, as such format is usually the more efficient
representation. For example, we aim to store the input data of MatVec in the domain-specific matrix
and vector format, rather than as an MDA, because the input MDA of MatVec contains many
redundancies—each vector element once per row of the input matrix (as illustrated in Figure 10).

The following lemma proves that functions inp_view and out_view are invertible and that they
are each others inverses. Consequently, the lemma shows howwe can arbitrarily switch between the
domain-specific and our MDA-based representation, and consequently also that we can implicitly
identify MDAs with the domain-specific data representation. For example, for computing MatVec,
we will specify the computations via pattern md_hom which operates on MDAs (see Figure 5), but
we use the view functions in our implementation to implicitly forward the MDA accesses to the
physically stored BUF representation.

Lemma 2. Let

inp_view( ID1 ∶ idx1,1 , . . . , idx1,�1 , . . . , ID� ∶ idx�,1 , . . . , idx�,��
)

and

out_view( ID1 ∶ idx1,1 , . . . , idx1,�1 , . . . , ID� ∶ idx�,1 , . . . , idx�,��
)

be two arbitrary instances of functions inp_view and out_view (in Notations 2 and 3), both using
the same index functions idx1,1, . . . , idx�,��

.
It holds (index functions omitted via ellipsis for brevity):

inp_view( . . . ) ○ out_view( . . . ) = out_view( . . . ) ○ inp_view( . . . ) = 83

Proof. Follows immediately from Definitions 7 and 9. �

The following figure illustrates the lemma using as example the inverse of MatVec’s input view
(shown in Figure 10):
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2.4 Examples
Figure 14 shows how our high-level representation is used for expressing different kinds of popular
data-parallel computations. For brevity, we state only the index functions, scalar function, and
combine operators of the higher-order functions; an expression as in Figure 6 is then obtained by
straightforwardly inserting these building blocks into the higher-order functions.

Subfigure 1. We show how our high-level representation is used for expressing linear algebra
routines: (1) Dot (Dot Product); (2) MatVec (Matrix-Vector Multiplication); (3) MatMul (Matrix Multi-
plication); (4) MatMulT (Transposed Matrix Multiplication) which computes matrix multiplication on
transposed input and output matrices; (5) bMatMul (batched Matrix Multiplication) where multiple
matrix multiplications are computed using matrices of the same sizes.

We can observe from the subfigure that our high-level expressions for the routines naturally
evolve from each other. For example, the md_hom instance for MatVec differs from the md_hom
instance for Dot by only containing a further concatenation dimension ++ for its 8 dimension. We
consider this close relation between the high-level expressions of MatVec and Dot in our approach
as natural and favorable, as MatVec can be considered as computing multiple times Dot—one
computation of Dot for each value of MatVec's 8 dimension. Similarly, the md_hom instance for
MatMul is very similar to the expression of MatVec, by containing the further concatenation
dimension 9 for MatMul’s 9 dimension. The same applies to bMatMul: its md_hom instance is the
expression of MatMul augmented with one further concatenation dimension.

Regarding MatMulT, the basic computation part of MatMulT and MatMul are the same, which is
exactly reflected in our formalisms: both MatMulT and MatMul are expressed using exactly the same
md_hom instances. The differences between MatMulT and MatMul lies only in the data accesses—
transposed accesses in the case of MatMulT and non-transposed accesses in the case of MatMul.
Data accesses are expressed in our formalism, in a structured way, via view functions (as discussed
in Section 2.3): for example, for MatMulT, we use for its first input matrix � the index function
(8, 9, :) ↦ (:, 8) for transposed access, instead of using index function (8, 9, :) ↦ (8, :) as for
MatMul’s non-transposed accesses.

Note that all md_hom instances in the subfigure are well defined according to Lemma 1.
Subfigure 2. We show how convolution-style stencil computations are expressed in our high-level

representation: (1) Conv2D expresses a standard convolution that uses a two-dimensional sliding
window [Podlozhnyuk, 2007]; (2) MCC expresses a so-called Multi-Channel Convolution [Dumoulin
and Visin, 2018]—a generalization of Conv2D that is heavily used in the area of deep learning; (3)
MCC_Capsule is a recent generalization of MCC [Hinton et al., 2018] which attracted high attention
due to its relevance for advanced deep learning neural networks [Barham and Isard, 2019].

While our md_hom instances for convolutions are quite similar to those of linear algebra routines
(they all use multiplication ∗ as scalar function and a mix of concatenations ++ and point-wise
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Fig. 14. Data-parallel computations expressed in our high-level representation.
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additions + as combine operators), the index functions used for the view functions of convolutions
are notably different from those used for linear algebra routines: the index functions of convolu-
tions contain arithmetic expressions (e.g., p+r and q+s) and thus access neighboring elements in
their input—a typical access pattern in stencil computations that requires special optimizations
[Hagedorn et al., 2018]. Moreover, convolution-style computations are often high-dimensional (e.g.,
10 dimensions in the case of MCC_Capsule), whereas linear algebra routines usually rely on less
dimensions. Our experiments in Section 5 confirm that respecting the data access patterns and
the high dimensionality of convolutions in the optimization process (as in our approach, which
we discuss later) often achieves significantly higher performance than using optimizations chosen
toward linear algebra routines, as in vendor libraries provided by NVIDIA and Intel for convolutions
[Li et al., 2016].

Subfigure 3. We show how quantum chemistry computation Coupled Cluster (CCSD(T)) [Kim
et al., 2019] is expressed in our high-level representation. The computation of CCSD(T) notably
differs from those of linear algebra routines and convolution-style stencils, by accessing its high-
dimensional input data in sophisticated transposed fashions: for example, the view function of
CCSD(T)’s instance one (denoted as I1 in the subfigure) uses indices a and b to access the last two
dimensions of its � input tensor (rather than the first two dimensions of the tensor, as would
be the case for non-transposed accesses). For brevity, the subfigure presents only two CCSD(T)
instances—in our experiments in Section 5, we present experimental results for nine different
real-world CCSD(T) instances.

Subfigures 4–6. The subfigures present computations whose scalar functions and combine oper-
ators are different from those used in Subfigures 1–3 (which are in Subfigures 1–3 straightforward
multiplications ∗, concatenation ++, and point-wise additions + only). For example, Jacobi stencils
(Subfigure 4) use as scalar function the Jacobi-specific computation JnD [Cecilia et al., 2012], and
Probabilistic Record Linkage (PRL) [Christen, 2012], which is heavily used in data mining to identify
duplicate entries in a database, uses a PRL-specific both scalar function wght and combine operator
maxPRL (point-wise combination via the PRL-specific binary operator maxPRL) [Rasch et al., 2019b].
Histograms, in their generalized version [Henriksen et al., 2020] (denoted as GenHisto in Subfigure
6), use an arbitrary, user-defined scalar function 5 and a user-defined associative and commutative
combine operator ⊕; the standard histogram variant Histo is then a particular instance of GenHist,
for ⊕ = + (point-wise addition) and 5 = 5Histo, where 5Histo(4,1) = 1 iff 4 = 1 and 5Histo(4,1) = 0
otherwise.

Subfigure 7. We show how typical map and reduce patterns [González-Vélez and Leyton, 2010]
are implemented in our high-level representation. Examples map(f) and reduce(⊕) (discussed in
Examples 3 and 4) are simple and thus straightforwardly expressed in our representation. In contrast,
example reduce(⊕,⊗) is more complex and shows how reduce(⊕) is extended to combine the
input vector simultaneously twice—once combining vector elements via operator ⊕ and once
using operator ⊗. The outcome of reduce(⊕,⊗) are two scalars—one representing the result of
combination via⊕ and the other of combination via⊗—which we map via the output view to output
elements O1 (result of ⊕) and O2 (result of ⊗), correspondingly; this is also illustrated in Figure 13.

Subfigure 8. We present prefix-sum computations [Blelloch, 1990] which differ from the compu-
tations in Subfigures 1–7 in terms of their combine operators: the operator used for expressing
computations in Subfigure 8 is different from concatenation (Example 1) and point-wise combina-
tions (Example 2). Computation scan(⊕) uses as combine operator ++prefix-sum(⊕)which computes
prefix-sum [Gorlatch and Lengauer, 1997] (formally defined by Rasch [2024], Section B.9) according
to binary operator ⊕, and Maximum Bottom Box Sum (MBBS) [Farzan and Nicolet, 2019] uses a
particular instance of prefix-sum for ⊕ = + (addition).
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3 Low-Level Representation for Data-Parallel Computations
We introduce our low-level representation for expressing data-parallel computations. In contrast to
our high-level representation, our low-level representation explicitly expresses the de-composition
and re-composition of computations (informally illustrated in Figure 3). Moreover, our low-level
representation is designed such that it can be straightforwardly transformed to executable program
code, because it explicitly captures and expresses the optimizations for the memory and core
hierarchy of the target architecture.

In the following, after briefly discussing an introductory example in Section 3.1, we introduce in
Section 3.2 our formal representation of computer systems, which we refer to as Abstract System
Model (ASM). Based on this model, we define low-level MDAs, low-level BUFs, and low-level combine
operators in Section 3.3, which are basic building blocks of our low-level representation.

Note that all details and concepts discussed in this section are not exposed to the end users of
our system and therefore transparent for them: expressions in our low-level representation are
generated fully automatically for the user, from expressions in our high-level representation (Figure
4), according to the methodologies presented later in Section 4 and auto-tuning [Rasch et al., 2021].

3.1 Introductory Example
Figure 15 illustrates our low-level representation by showing how MatVec (Matrix-Vector Multipli-
cation) is expressed in our representation. In our example, we use an input matrix" ∈ ) 512×4096 of
size 512 × 4096 (size chosen arbitrarily) that has an arbitrary but fixed scalar type ) ∈ TYPE; the
input vector E ∈ ) 4096 is of size 4096, correspondingly.

For better illustration, we consider for this introductory example a straightforward, artificial target
architecture that has only two memory layers—Host Memory (HM) and Cache Memory (L1)—and one
Core Layer (COR) only; our examples presented and discussed later in this section target real-world
architectures (e.g., CUDA-capable NVIDIA GPUs). The particular values of tuning parameters
(discussed in detail later in this section), such as the number of threads and the order of combine
operators, are chosen by hand for this example and as straightforward for simplicity.

Our low-level representations work in three phases: (1) de-composition (steps 1–7, in the right part
of Figure 15), (2) scalar (step 8, bottom part of the figure), (3) re-composition (steps 9–15, left part).
Steps are arranged from right to left, inspired by the application order of function composition.

(1) De-Composition Phase. The de-composition phase (steps 1–7 in Figure 15) partitions input
MDA ↓a (in the top right of Figure 15) to the structure ↓a< ...>

5
(bottom right) which we refer

to as low-level MDA and define formally in the next subsection. The low-level MDA represents
a partitioning of MDA ↓a (a.k.a hierarchical, multi-dimensional tiling in programming), where
each particular choice of indices ?11 ∈ [0, 2)N0 , ?12 ∈ [0, 4)N0 , ?21 ∈ [0, 8)N0 , ?22 ∈ [0, 16)N0 , ?31 ∈
[0, 32)N0 , ?32 ∈ [0, 64)N0 refers to an MDA that represents an individual part of MDA ↓a (a.k.a.
tile in programming—informally illustrated in Figure 7). The partitions are arranged on multiple
layers (indicated by the ?’s superscripts) and in multiple dimensions (indicated by subscripts)—as
illustrated in Figure 16—according to the memory/COR of the target architecture and dimensions
of the MDH computation: we partition for each of the target architecture’s three layers (HM, L1,
COR) and in each of the two dimensions of the MDH (dimensions 1 and 2, as we use example
MatVec in Figure 15, which represents a two-dimensional MDH computation). Consequently, our
partitioning approach allows efficiently exploiting each particular layer of the target architecture
(both memory and core layers), and also optimizing for both dimensions of the target computation
(in the case of MatVec, the 8-dimension and also the :-dimension—see Figure 1), allowing fine-
grained optimizations.
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Fig. 15. Low-level expression for straightforwardly computing Matrix-Vector Multiplication (MatVec) on a
simple, artificial architecture with two memory layers (HM L1) and one COR. Dotted lines indicate data flow.

We compute the partitionings of MDAs by applying the concatenation operator (Example 1)
inversely (indicated by using =∶ instead of ∶= in the top right part of Figure 15). For example, we
partition in Figure 15 MDA ↓a first via the inverse of ++(HM,x)1 in dimension 1 (indicated by the
subscript 1 of ++(HM,x)1 ; the superscript (HM,x) is explained later) into two parts, as ?11 iterates
over interval [0, 2)N0 = {0, 1} which consists of two elements (0 and 1)—the interval is chosen
arbitrarily for this example. Afterward, each of the obtained parts is further partitioned, in the
second dimension, via ++(HM,y)2 into four parts (?12 iterates over [0, 4)N0 = {0, 1, 2, 3} which consists
of four elements). The (2 ∗ 4)-many HM parts are then each further partitioned in both dimensions
for the COR layer into (8 ∗ 16) parts, and each individual COR part is again partitioned for the L1
layer into (32 ∗ 64) parts, resulting in (2 ∗ 8 ∗ 32) ∗ (4 ∗ 16 ∗ 64) = 512 ∗ 4096 parts in total.

We always use a full partitioning in our low-level expressions,12 i.e., each particular choice of
indices ?11 , ?12 , ?21 , ?22 , ?31 , ?32 points to an MDA that contains a single element only (in Figure 16,
the individual elements are denoted via symbol ×, in the bottom part of the figure). By relying
on a full partitioning, we can apply scalar function 5 to the fully partitioned MDAs later in the
scalar phase (described in the next paragraph). This is because function 5 is defined on scalar
values (Definition 4) to make defining scalar functions more convenient for the user (as discussed
in Section 2.2).

12Our future work (outlined in Section 8) aims to additionally allow coarser-grained partitioning schemas, e.g., to target
domain-specific hardware extensions (such asNVIDIA Tensor Cores [NVIDIA, 2017] which compute 4×4matrices immediately
in hardware, rather than 1 × 1 matrices as obtained in the case of a full partitioning).
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Fig. 16. Illustration of multi-layered, multi-dimensional MDA partitioning using the example MDA from
Figure 15. In this example, we use three layers and two dimensions, according to Figure 15.

The superscript of combine operators, e.g., (COR,x) of operator ++(COR,x)1 , is a so-called opera-
tor tag (formal definition given in the next section). Such a tag indicates to our code generator
whether its combine operator is assigned to a memory layer (and thus computed sequentially
in our generated code) or to a COR (and thus computed in parallel). For example, tag (COR,x)

indicates that parts processed by operator ++(COR,x)1 should be computed by cores COR, and thus
in parallel; the dimension tag x indicates that COR layer’s x dimension should be used for com-
puting the operator (we use dimension x for our example architecture as an analogous concept
to CUDA’s thread/block dimensions x,y,z for GPU architectures [NVIDIA, 2022g]), as we also
discuss in the next section. In contrast, tag (HM,x) refers to a memory layer (HM) and thus, operator
++(HM,x)1 is computed sequentially. Since the current state-of-practice programming approaches
(OpenMP, CUDA, OpenCL, . . . ) have no explicit notion of memory tiles (e.g., by offering the
potential variables tileIdx.x/tileIdx.y/tileIdx.z, as analogous concepts to CUDA variables
threadIdx.x/threadIdx.y/threadIdx.z), the dimensions tag x in (HM,x) is currently ignored
by our code generator, because HM refers to a memory layer.

Note that the number of parts (e.g., 2 parts on layer 1 in dimension 1, and 4 parts on layer 1 in
dimension 2. . . ), the combine operators’ tags, and our partition order (e.g., first partitioning in
MDA’s dimension 1 and afterwards in dimension 2) are chosen arbitrarily for this example. These
choices are critical for performance and should be optimized13 for a particular target architecture

13We currently rely on auto-tuning [Rasch et al., 2021] for choosing optimized values of performance-critical parameters, as
we discuss in Section 5.
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and characteristics of the input and output data (size, memory layouts, etc.), as we discuss in detail
later in this section.

(2) Scalar Phase. In the scalar phase (step 8 in Figure 15), we apply MDH’s scalar function 5 to
the individual MDA elements

↓
a
<?11,?

1
2 ∣ ?

2
1,?

2
2 ∣ ?

3
1,?

3
2 >

5

for each particular choice of indices ?11 , ?12 , ?21 , ?22 , ?31 , ?32 , which results in

↑
a
<?11,?

1
2 ∣ ?

2
1,?

3
2 ∣ ?

3
1,?

3
2 >

5

In the figure, 5⃗ is the slight adaption of function 5 that operates on a singleton MDA, rather than a
scalar (see Footnote 9).

Annotation→ < (1,2), . . . > indicates the application order of applying scalar function (in
this example, first iterating over ?11 , then over ?12 , etc.), and we use annotation→ < (HM,x), . . .

> to indicate how the scalar computation is assigned to the target architecture (this is described
in detail later in this section). Annotations → M: HM, v: L1 and → w: L1 (in the bottom part
of Figure 15) indicate the memory regions to be used for reading and writing the input scalar of
function 5 (also described later in detail).

(3) Re-Composition Phase. Finally, the re-composition phase (steps 9–15 in Figure 15) combines
the computed parts ↑a<?

1
1,?

1
2 ∣ ?

2
1,?

2
2 ∣ ?

3
1,?

3
2 >

5
(bottom left in the figure) to the final result ↑a (top left)

via MDH’s combine operators, which are in the case of matrix-vector multiplication ⊛1 ∶= ++
(concatenation) and ⊛2 ∶= + (point-wise addition). In this example, we first combine the L1 parts in
dimension 2 and then in dimension 1; afterward, we combine the COR parts in both dimensions,
and finally the HM parts. Analogously to before, this order of combine operators and their tags are
chosen arbitrarily for this example and should be auto-tuned for high performance.

In the de- and re-composition phases, the arrow notation below combine operators allow effi-
ciently exploiting architecture’s memory hierarchy, by indicating the memory region to read from
(de-composition phase) or to write to (re-composition phase); the annotations also indicate the
memory layouts to use. We exploit these memory and layout information in both (1) our code
generation process to assign combine operators’ input and output data to memory regions and to
chose memory layouts for the data (row major, column major, etc.); (2) our formalism to specify
constraints of programming models, e.g., that in CUDA, results of GPU cores can only be com-
bined in designated memory regions [NVIDIA, 2022f]. For example, annotation → M: HM[1,2],
v: L1[1] below an operator in the de-composition phase indicates to our code generator that the
parts (a.k.a tiles) of matrix" used for this computation step should be read from the HM memory
region and that parts of vector E should be copied to and accessed from fast L1 memory. The
annotation also indicates that M should be stored using a row-major memory layout (as we use
[1,2] and not [2,1]). The memory regions and layouts are chosen arbitrarily for this example and
should be chosen as optimized (auto-tuned) for the particular target architecture and characteristics
of the input and output data. Formally, the arrow notation of combination operators is a concise
notation to hide MDAs and BUFs for intermediate results (discussed by Rasch [2024], Section C.3,
for the interested reader).
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Excursion: Code Generation14

Our low-level expressions can be straightforwardly transformed to executable program code
in imperative-style programming languages (such as OpenMP, CUDA, and OpenCL). As code
generation is not the focus of this work, we outline our code generation process briefly using the
example of Figure 15. Details about our code generation are provided by Rasch [2024], Section E
and will be presented and illustrated in detail in our future work.

We implement combine operators as sequential or parallel loops. For example, the operator
++(HM,x)1 is assigned to memory layer HM and thus implemented as a sequential loop (loop range indi-
cated by [0, 2)N0 ), and operator ++(COR,x)1 is assigned to COR and thus implemented as a parallel loop
(e.g., a loop annotated with #pragma omp parallel for in OpenMP [OpenMP, 2022], or variable
threadIdx.x in CUDA [NVIDIA, 2022g]). Correspondingly, our three phases (de-composition,
scalar, and re-composition) each correspond to an individual loop nest; we generate the nests as
fused when the tags of combine operators have the same order in phases, as in Figure 15. Note
that our currently targeted programming models (OpenMP, CUDA, and OpenCL) have no explicit
notion of tiles, e.g., by offering the potential variable tileIdx.x for managing tiles automatically
in the programming model (similarly as variable threadIdx.x automatically manages threads in
CUDA). Consequently, when the operator tag refers to a memory layer, the dimension information
within tags are currently ignored by our code generator (such as dimension x in tag (HM,x) which
refers to memory layer HM).

Operators’ memory regions correspond to straightforward allocations (e.g., in CUDA’s device,
shared, or register memory [NVIDIA, 2022g], according to the arrow annotations in our low-
level expression). Memory layouts are implemented as aliases, e.g., preprocessor directives such as
#define M(i,k) M[k][i] for storing MatVec’s input matrix" as transposed.

We implement MDAs also as aliases (according to Definition 7), e.g., #define inp_mda(i,k)
M[i][k],v[k] for MatVec’s input MDA.

Code optimizations that are applied on a lower abstraction level than proposed by our represen-
tation in Example 15 are beyond the scope of this work and outlined by Rasch [2024], Section F,
e.g., loop fusion and loop unrolling which are applied on the loop-based abstraction level.

We provide an open sourceMDH compiler for code generation [MDH Project, 2024]. Our compiler
takes as input a high-level MDH expression (as in Figure 6), in the form of a Python program, and
it fully automatically generates auto-tuned program code from it.

In the following, we introduce in Section 3.2 our formal representation of a computer system
(which can be a single device, but also a multi-device or a multi-node system, as we discuss soon),
and we illustrate our formal system representation using the example architectures targeted by
programming models OpenMP, CUDA, and OpenCL. Afterward, in Section 3.3, we formally define
the basic building blocks of our low-level representation—low-level MDAs, low-level BUFs, and
low-level combine operators—based on our formal system representation.

3.2 ASM
Definition 10 (Abstract System Model). An !-Layered Abstract System Model (ASM), ! ∈ N, is any

pair of two positive natural numbers

(NUM_MEM_LYRs , NUM_COR_LYRs ) ∈ N ×N

for which NUM_MEM_LYRs + NUM_COR_LYRs = !.

14Our implementation of MDH is open source: https://mdh-lang.org
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Our ASM representation is capable of modeling architectures with arbitrarily deep memory
and core hierarchies15: NUM_MEM_LYRs denotes the target architecture’s number of memory layers
and NUM_COR_LYRs the architecture’s number of COR, correspondingly. For example, the artificial
architecture we use in Figure 15 is represented as an ASM instance as follows (bar symbols denote
set cardinality):

ASMartif. ∶= ( ∣{HM, L1}∣ , ∣{COR}∣ ) = (2, 1)

The instance is a pair consisting of the numbers 2 and 1 which represent the artificial architecture’s
two memory layers (HM and L1) and its single COR.

Example 11. We show particular ASM instances that represent the device models of the state-of-
practice approaches OpenMP, CUDA, and OpenCL:

ASMOpenMP ∶= ( ∣{MM, L2, L1}∣ , ∣{COR}∣ ) = (3, 1)
ASMOpenMP+L3 ∶= ( ∣{MM, L3, L2, L1}∣ , ∣{COR}∣ ) = (4, 1)
ASMOpenMP+L3+SIMD ∶= ( ∣{MM, L3, L2, L1}∣ , ∣{COR, SIMD}∣ ) = (4, 2)

ASMCUDA ∶= ( ∣{DM, SM, RM}∣ , ∣{SMX, CC}∣ ) = (3, 2)
ASMCUDA+WRP ∶= ( ∣{DM, SM, RM}∣ , ∣{SMX, WRP, CC}∣ ) = (3, 3)

ASMOpenCL ∶= ( ∣{GM, LM, PM}∣ , ∣{CU, PE}∣ ) = (3, 2)

OpenMP is often used to target (3+1)-layered architectures which rely on three memory regions
(main memory MM and caches L2 and L1) and one COR. OpenMP-compatible architectures sometimes
also contain the L3 memory region, and they may allow exploiting Single-Instruction-Multiple-
Data parallelization (a.k.a. vectorization [Klemm et al., 2012]), which are expressed in our ASM
representation as a further memory or COR, respectively.

CUDA’s target architectures are (3 + 2)-layered: they consist of Device Memory (DM), Shared
Memory (SM), and Register Memory (RM), and they offer as cores so-called Streaming Multiprocessors
(SMX) which themselves consist of Cuda Cores (CC). CUDA also has an implicit notion of so-called
Warps (WRP) which are not explicitly represented in the CUDA programming model [NVIDIA,
2022g], but often exploited by programmers—via special intrinsics (e.g., shuffle and tensor core
intrinsics [NVIDIA, 2017, 2018])—to achieve highest performance.

OpenCL-compatible architectures are designed analogously to those targeted by CUDA; con-
sequently, both OpenCL- and CUDA-compatible architectures are represented by the same ASM
instance in our formalism. Apart from straightforward syntactical differences between OpenCL and
CUDA [StreamHPC, 2016], we see as the main differences between the two programming models
(from our ASM-based abstraction level) that OpenCL has no notion of warps, and it uses a different
terminology—Global/Local/Private Memory (GM/LM/PM) instead of device/shared/register memory,
and Compute Unit (CU) and Processing Element (PE), rather than SMX and CC.

In the following, we consider memory regions and cores of ASM-represented architectures as
arrangeable in an arbitrary number of dimensions. Programming models for such architectures
often have native support for such arrangements. For example, in the CUDA model, memory is
accessed via arrays which can be arbitrary-dimensional (a.k.a multi-dimensional C arrays), and
cores are programmed in CUDA via threads which are arranged in CUDA’s so-called dimensions x,
y, z; further thread dimensions can be explicitly programmed in CUDA, e.g., by embedding them
in the last dimension z.

15We deliberately do not model into our ASM representation an architecture’s particular number of cores and/or sizes of
memory regions, because our optimization process is designed to be generic in these numbers and sizes, for high flexibility.
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We express constraints of programming models—for example, that in CUDA, SMX can combine
their results in DM only [NVIDIA, 2022f]—via so-called tuning parameter constraints, which we
discuss later in this section.

Note that we call our abstraction Abstract System Model (rather than Abstract Architecture Model,
or the like), because it can also represent systems consisting of multiple devices and/or nodes, and
so on. For example, our ASM representation of a multi-GPU system is

ASMMulti-GPU ∶= ( ∣{HM, DM, SM, RM}∣ , ∣{GPU, SMX, CC}∣ ) = (4, 3)

It extends our ASM-based representation of CUDA devices (Example 11) by HM which represents
the memory region of the system containing the GPUs (and in which the intermediate results of
different GPUs are combined), and it introduces the further COR GPU representing the system’s
GPUs. Analogously, our ASM representation of a multi-node, multi-GPU system is

ASMMulti-Node-Multi-GPU ∶= ( ∣{NM, HM, DM, SM, RM}∣ , ∣{NOD, GPU, SMX, CC}∣ ) = (5, 4)

It adds to ASMMulti-GPU the memory layer Node Memory (NM) which represents the memory region
of the host node, and it adds COR Node (NOD) which represents the compute nodes. Our approach
is currently designed for homogeneous systems, i.e., all devices/nodes/. . . are assumed to be iden-
tical. We aim to extend our approach to heterogeneous systems (which may consist of different
devices/nodes/. . . ) as future work, inspired by dynamic load balancing approaches [Chen et al.,
2010].

3.3 Basic Building Blocks
We introduce the three main basic building blocks of our low-level representation: (1) low-level
MDAs which we use to partition MDAs and that represent multi-layered, multi-dimensionally
arranged collection of ordinary MDAs (Definition 1)—one ordinary MDA per memory/COR of their
target ASM and for each dimension of the MDH computation (as illustrated in Figure 16); (2)
low-level BUFs which are a collection of ordinary BUFs (Definition 5) and that are augmented with
a memory region and a memory layout ; (3) low-level combine operators which represent combine
operators (Definition 2) to which the layer and dimension of their target ASM is assigned to be used
to compute the operator in our generated code (e.g., a COR to compute the operator in parallel).

Definition 11 (Low-Level MDA). An !-layered, �-dimensional, %-partitioned low-level MDA that
has scalar type ) and index sets � is any function a;; of type:

a
<

Partitioning: Layer 1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(?11,...,?

1
�)∈%

1
1×...×%

1
� ∣ ... ∣

Partitioning: Layer L

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(?!1 ,...,?

!
�)∈%

!
1 ×...×%

!
� >

;;
∶

�
<?11,...,?

1
� ∣ ... ∣?

!
1 ,...,?

!
�>

1 × . . . × �<?
1
1,...,?

1
� ∣ ... ∣?

!
1 ,...,?

!
�>

� → )

Next, we introduce low-level BUFs which work similarly as BUFs (Definition 5), but are tagged
with a memory region and a memory layout. While these tags have no effect on the operators’
semantics, they indicate later to our code generator in which memory region the BUF should be
stored and accessed, and which memory layout to chose for storing the BUF. Moreover, we use
these tags to formally define constraints of programming models, e.g., that according to the CUDA
specification [NVIDIA, 2022f], SMX cores can combine their results in memory region DM only.
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Definition 12 (Low-Level BUF). An !-layered, �-dimensional, %-partitioned low-level BUF that
has scalar type ) and size # is any function b;; of type (↪→ denotes bijection):

b
<

Memory Region
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We refer to MEM as low-level BUF’s memory region and to f as its memory layout, and we refer to
the function

b
trans
;;
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that is defined as

b
trans
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as b;; ’s transposed function representation (which we use to store the buffer in our generated code).

Finally, we introduce low-level combine operators. We define such operators to behave the same
as ordinary combine operators (Definition 2), but we additionally tag them with a layer of their
target ASM. Similarly as for low-level BUFs, the tag has no effect on semantics, but it is used in
our code generation process to assign the computation to the hardware (e.g., indicating that the
operator is computed by either an SMX, WRP, or CCwhen targeting CUDA—see Example 11). Also, we
use the tags to define model-specific constraints in our formalism (as also discussed for low-level
BUFs). We also tag the combine operator with a dimension of the ASM layer, enabling later in our
optimization process to express advanced data access patterns (a.k.a. swizzles [Phothilimthana et
al., 2019]). For example, when targeting CUDA, flexibly mapping ASM dimensions on CC layer (in
CUDA terminology, the dimensions are called threadIdx.x, threadIdx.y, and threadIdx.z) to
array dimensions enables the well-performing coalesced global memory accesses [NVIDIA, 2022f]
for both transposed and non-transposed data layouts, by only using different dimension tags.

Definition 13 (ASM Level). We refer to pairs (;ASM, 3ASM)—consisting of an ASM layer ;ASM ∈ [1, !]N
and an ASM dimension 3ASM ∈ [1, �]N—as ASM Levels (ASM-LVL)16

ASM-LVL ∶= { (;ASM, 3ASM) ∣ ;ASM ∈ [1, !]N, 3ASM ∈ [1, �]N}

Definition 14 (Low-Level Combine Operator). Let be ! ∈ N (representing an ASM’s number of
layers) and � ∈ N (representing an MDH’s number of dimensions). A low-level combine operator

⊛<(;ASM,3ASM)∈ASM-LVL={ (;,3) ∣ ;∈[1,!]N , 3∈[1,�]N }>

is a function for which ⊛<(;ASM,3ASM)> is an ordinary combine operator (Definition 2), for each
(;ASM, 3ASM) ∈ ASM-LVL.

Note that in Figure 15, for better readability, we use domain-specific identifiers for ASM layers:
HM:=1 as an alias for the ASM layer that has id 1, L1:=2 for the layer with id 2, and COR:=3 for
the layer with id 3. For dimensions, we use aliases G ∶= 1 for ASM dimension 1 and ~ ∶= 2 for ASM
dimension 2, correspondingly.
16For simplicity, we refrain from annotating identifier ASM-LVL with values ! and � (e.g., ASM-LVL<!,�>), because both
values will usually be clear from the context.
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4 Lowering: From High Level to Low Level
We have designed our formalism such that an expression in our high-level representation (as
in Figure 6) can be systematically lowered to an expression in our low-level representation (as
in Figure 15). For this, we parameterize our high-level representation, step-by-step, in tuning
parameters; thereby, we obtain for concrete tuning parameter values a particular expression
in our low-level representation—this is formally discussed and demonstrated by Rasch [2024],
Section 4, for the interested reader. We chose optimized values of tuning parameters fully automati-
cally via auto-tuning [Rasch et al., 2021]; Section 8 outlines alternative approaches for parameter
selection.

Table 1 lists the tuning parameters of our lowering process—different values of tuning parameters
lead to semantically equal expressions in our low-level representation (which is proven formally
by Rasch [2024], Section 4), but the expressions will be translated to differently optimized code
variants.17

In the following, we explain the 15 tuning parameters in Table 1. We give our explanations in a
general, formal setting that is independent of a particular computation and programming model.
Dotted lines in Table 1 separate parameters for different phases: parameters D1–D4 customize the de-
composition phase, parameters S1–S6 the scalar phase, and parameters R1–R4 the re-composition
phase, correspondingly; the parameter 0 impacts all three phases (separated by a straight line in
the table).

Our tuning parameters in Table 1 have constraints: (1) algorithmic constraints which have to
be satisfied by all target programming models, and (2) model constraints which are specific for
particular programming models only (CUDA-specific constraints, OpenCL-specific constraints,
etc), e.g., that the results of CUDA’s thread blocks can be combined in designated memory regions
only [NVIDIA, 2022f]. We discuss algorithmic constraints in the following, together with our
tuning parameters; model constraints are discussed by Rasch [2024], Section C.1, for the interested
reader.

Note that our parameters do not aim to introduce novel optimization techniques, but to unify,
generalize, and combine together well-proven optimizations, based on a formal foundation, toward
an efficient, overall optimization process that applies to various combinations of data-parallel
computations, architectures, and characteristics of input and output data (e.g., their size and
memory layout).

In Table 1, we point to combine operators in Figure 15 using pairs (;,3) to which we refer asMDH
Levels. We use the pairs as enumeration for operators in the de-composition and re-composition
phases.

Definition 15 (MDH Level). We refer to pairs (;MDH, 3MDH)—consisting of a layer ;MDH ∈ [1, !]N and
dimension 3MDH ∈ [1, �]N—as MDH Levels (MDH-LVL):

MDH-LVL ∶= { (;MDH, 3MDH) ∣ ;MDH ∈ [1, !]N, 3MDH ∈ [1, �]N}18

We use the pairs to say, for example, that the MDH computation is partitioned on level (1, 1)
(i.e., layer ; = 1, dimension 3 = 1) into two parts, as in Figure 15.

17Rasch [2024] (Section •3.5) shows that by choosing particular tuning parameter values, we can express in our formalism
the (de/re)-compositions of different, existing state-of-the-art approaches, including scheduling-based approach TVM [Chen
et al., 2018a], polyhedral compilers PPCG [Verdoolaege et al., 2013], and Pluto [Bondhugula et al., 2008b].
18 The same as for identifier ASM-LVL (Definition 13), we refrain from annotating identifier MDH-LVL with values ! and � .
Note that MDH-LVL and ASM-LVL both refer to the same set of pairs, but we use identifier MDH-LVL when referring to MDH
levels and identifier ASM-LVL when referring to ASM levels, correspondingly, for better clarity.
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Table 1. Tuning Parameters of Our Low-Level Expressions

No. Name Range Description

0 #PRT MDH-LVL→ N number of parts

D1 f↓-ord MDH-LVL↪→ MDH-LVL de-composition order

D2 ↔↓-ass MDH-LVL↪→ ASM-LVL ASM assignment (de-composition)

D3 ↓-mem<ib> MDH-LVL→ MR memory regions of input BUFs (ib)

D4 f<ib>↓-mem MDH-LVL→ [1, . . . , �IB
ib]S memory layouts of input BUFs (ib)

S1 f5 -ord MDH-LVL↪→ MDH-LVL scalar function order

S2 ↔5 -ass MDH-LVL↪→↪→ ASM-LVL ASM assignment (scalar function)

S3 5 ↓-mem<ib> MR memory region of input BUF (ib)

S4 f<ib>
5
↓-mem

[1, . . . , �IB
ib]S memory layout of input BUF (ib)

S5 5 ↑-mem<ob> MR memory region of output BUF (ob)

S6 f<ob>
5
↑-mem

[1, . . . , �OB
ob]S memory layout of output BUF (ob)

R1 f↑-ord MDH-LVL↪→ MDH-LVL re-composition order

R2 ↔↑-ass MDH-LVL↪→ ASM-LVL ASM assignment (re-composition)

R3 ↑-mem<ob> MDH-LVL→ MR memory regions of output BUFs (ob)

R4 f<ob>↑-mem MDH-LVL→ [1, . . . , �OB
ob]S memory layouts of output BUFs (ob)

Parameter 0. Parameter #PRT is a function that maps pairs in MDH-LVL to natural numbers; the
parameter determines how much data are grouped together into parts in our low-level expression
(and consequently also in our generated code later), by setting the particular number of parts
(a.k.a. tiles) used in our expression. For example, in Figure 15, we use #PRT(1, 1) ∶= 2 which causes
combine operators ++(HM,x)1 and ⊛(HM,x)1 to iterate over interval [0, 2)N0 (and thus partitioning the
MDH computation on level (1, 1) into two parts), and we use #PRT(1, 2) ∶= 4 to let operators ++(HM,y)2

and ⊛(HM,x)2 iterate over interval [0, 4)N0 (partitioning on level (1, 2) into four parts), and so on.
To ensure a full partitioning (so that we obtain singleton MDAs to which scalar function 5 can

be applied in the scalar phase, as discussed above), we require the following algorithmic constraint
for the parameter (#3 denotes the input size in dimension 3):

∏
;∈[1,!]N

#PRT(;,3) = #3 , for all 3 ∈ [1, �]N.

In our generated code, the number of parts directly translates to the number of tiles which are
computed either sequentially (a.k.a. cache blocking [Lam et al., 1991]) or in parallel, depending on
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the combine operators tags (which are chosen via Parameters D2,S2,R2, as discussed soon). In
our example from Figure 15, we process parts belonging to combine operators tagged with HM and
L1 sequentially, via for-loops, because HM and L1 correspond to ASM’s memory layers (note that
Parameter 0 only chooses the number of tiles; the parameter has no effect on explicitly copying
data into fast memory resources, which is the purpose of Parameters D3,R3,S1,S2). The COR parts
are computed in parallel in our generated code, because COR corresponds to ASM’s COR, and thus,
the number of COR parts determines the number of threads used in our code.

An optimized number of tiles is essential for achieving high performance [Bacon et al., 1994],
e.g., due to its impact for locality-aware data accesses (number of sequentially computed tiles) and
efficiently exploiting parallelism (number of tiles computed in parallel, which corresponds to the
number of threads in our generated code).

Parameters D1,S1,R1. These three parameters are permutations on MDH-LVL (indicated by symbol
↪→ in Table 1), determining when data are accessed and combined. The parameters specify the order
of combine operators in the de-composition and re-composition phases (parameters D1 and R1),
and the order of applying scalar function 5 to parts (parameter S1). Thereby, the parameters specify
when parts are processed during the computation.

In our generated code, combine operators are implemented as sequential/parallel loops such
that the parameters enable optimizing loop orders (a.k.a. loop permutation [McKinley et al., 1996]).
For combine operators assigned to ASM’s COR (via parameter R2 discussed in the next paragraph)
and thus computed in parallel, parameter R1 particularly determines when the computed results
of threads are combined: if we used in the re-composition phase of Figure 15 combine operators
tagged with (COR,x) and (COR,y) immediately after applying scalar function 5 (i.e., in steps 10©
and 11©, rather than steps 12© and 13©), we would combine the computed intermediate results of
threads multiple times, repeatedly after each individual computation step of threads, and using the
two operators at the end of the re-composition phase (in steps 14© and 15©) would combine the result
of threads only once, at the end of the re-composition phase. Combining the results of threads early
in the computation usually has the advantages of reduced memory footprint, because memory
needs to be allocated for one thread only, but at the cost of more computations, because the results
of threads need to be combined multiple times. In contrast, combing the results of threads late in
the computation reduces the amount of computations, but at the cost of higher memory footprint.
Our parameters make this tradeoff decision generic in our approach such that the decision can be
left to an auto-tuning system, for example.

Note that each phase corresponds to an individual loop nest which we fuse together when
parameters D1,S1,R1 (as well as parameters D2,S2,R2) coincide (as also outlined by Rasch [2024],
Section F).

Parameters D2,S2,R2. These parameters (symbol ↪→ in the table denotes bijection) assign MDH
levels to ASM levels, by setting the tags of low-level combine operators (Definition 14). Thereby,
the parameters determine by whom data are processed (e.g., threads or for-loops), similar to the
concept of bind in scheduling languages [Apache TVM Documentation, 2022a]. Consequently,
the parameters determine which parts should be computed sequentially in our generated code
and which parts in parallel. For example, in Figure 15, we use ↔↓ -ass(2, 1) ∶= (COR, x) and
↔↓ -ass(2, 2) ∶= (COR, y), thereby assigning the computation of MDA parts on layer 2 in both
dimensions to ASM’s COR layer in the de-composition phase, which causes processing the parts
in parallel in our generated code. For multi-layered core architectures, the parameters particu-
larly determine the thread layer to be used for the parallel computation (e.g., block or thread
in CUDA).
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Using these parameters, we are able to flexibly set data access patterns in our generated code. In
Figure 15, we assign parts on layer 2 to COR layers, which results in a so-called block access pattern
of cores: we start 8 ∗ 16 threads, according to the 8 ∗ 16 core parts, and each thread processes a
part of the input MDA representing a block of 32 × 64 MDA elements within the input data. If
we had assigned in the figure the first computation layer to ASM’s COR layer (in the figure, this
layer is assigned to ASM’s HM layer), we would start 2 ∗ 4 threads and each thread would process
MDA parts of size (8 ∗ 32) × (16 ∗ 64); assigning the last MDH layer to CORs would result in
(2 ∗ 8 ∗ 32) × (4 ∗ 16 ∗ 64) threads, each processing a singleton MDA (a.k.a. strided access).

The parameters also enable expressing so-called swizzle access patterns [Phothilimthana et
al., 2019]. For example, in CUDA, processing consecutive data elements in data dimension 1 by
threads that are consecutive in thread dimension 2 (a.k.a threadIdx.y dimension in CUDA) can
achieve higher performance due to the hardware design of fast memory resources in NVIDIA GPUs.
Such swizzle patterns can be easily expressed and auto-tuned in our approach; for example, by
interchanging in Figure 15 tags (COR,x) and (COR,y). For memory layers (such as HM and L1),
the dimension tags x and y currently have no effect on our generated code, as the programming
models we target at the moment (OpenMP, CUDA, and OpenCL) have no explicit notion of tiles.
However, this might change in the future when targeting new kinds of programming models, e.g.,
for upcoming architectures.

Parameters D3,R3 and S3,S5. Parameters D3 and R3 set for each BUF the memory region to be
used, thereby determining where data are read from or written to, respectively. In the table, we
use ib ∈ N to refer to a particular input BUF (e.g., ib=1 to refer to the input matrix of matrix-
vector multiplication, and ib=2 to refer to the input vector), and ob ∈ N refers to an output BUF,
correspondingly. Parameter D3 specifies the memory region to read from, and parameter R3 the
region to write to. The set MR ∶= [1, NUM_MEM_LYRs]N denotes the ASM’s memory regions.

Similarly to parameters D3 and R3, parameters S3 and S5 set the memory regions for the input
and output of scalar function 5 .

Exploiting fast memory resources of architectures is a fundamental optimization [Bondhugula,
2020; Hristea et al., 1997, Mei et al., 2014; Salvador Rohwedder et al., 2023], particularly due to
the performance gap between processors’ cores and their memory systems [Oliveira et al., 2021;
Wilkes, 2001].

Parameters D4,R4 and S4,S6. These parameters set the memory layouts of BUFs, thereby de-
termining how data are accessed in memory; for brevity in Table 1, we denote the set of all BUF
permutations [1, �]N ↪→ [1, �]N (Definition 12) as [1, . . . , �]S (symbol S is taken from the notation
of symmetric groups [Sagan, 2001]). In the case of our matrix-vector multiplication example in
Figure 15, we use a standard memory layout for all matrices, which we express via the parameters
by setting them to the identity function, e.g., f↓<M>-mem(1, 1) ∶= 83 (Parameter D4) for the matrix read
by operator ++(HM,x)1 .

An optimized memory layout is important to access data in a locality-aware and thus efficient
manner.

5 Experimental Results
We experimentally evaluate our approach by comparing it to popular representatives of four
important classes:

(1) Scheduling Approach: TVM [Chen et al., 2018a] which generates GPU and CPU code from
programs expressed in TVM’s own high-level program representation;
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(2) Polyhedral Compilers: PPCG [Verdoolaege et al., 2013] for GPUs19 and Pluto [Bondhugula
et al., 2008b] for CPUs, which automatically generate executable program code in CUDA
(PPCG) or OpenMP (Pluto) from straightforward, unoptimized C programs;

(3) Functional Approach: Lift [Steuwer et al., 2015] which generates OpenCL code from a Lift-
specific, functional program representation;

(4) Domain-Specific Libraries: NVIDIA cuBLAS [NVIDIA, 2022b] and NVIDIA cuDNN [NVIDIA,
2022e], as well as Intel oneMKL [Intel, 2022c] and Intel oneDNN [Intel, 2022b], which
offer the user easy-to-use, domain-specific building blocks for programming. The libraries
internally rely on pre-implemented assembly code that is optimized by experts for their
target application domains: linear algebra (cuBLAS and oneMKL) or convolutions (cuDNN
and oneDNN), respectively. To make comparison against the libraries challenging for us,
we compare to all routines provided by the libraries. For example, the cuBLAS library
offers three, semantically equal but differently optimized routines for computing MatMul:
cublasSgemm (the default MatMul implementation in cuBLAS), cublasGemmEx which is part
of the cuBLASEx extension of cuBLAS [NVIDIA, 2022c], and the most recent cublasLtMatmul
which is part of the cuBLASLt extension [NVIDIA, 2022d]; each of these three routines may
perform differently on different problem sizes (NVIDIA usually recommends to naively test
which routine performs best for the particular target problem). To make comparison further
challenging for us, we exhaustively test for each routine all of its so-called cublasGemmAlgo_t
variants and report the routine’s runtime for the best performing variant. In the case of
oneMKL, we compare also to its JIT engine [Intel, 2019] which is specifically designed and
optimized for small problem sizes. We also compare to library EKR [Hentschel et al., 2008]
which computes data mining example PRL (Figure 14) on CPUs—the library is implemented
in the Java programming language and parallelized via Java Threads, and the library is used
in practice by the Epidemiological Cancer Registry in North Rhine-Westphalia (Germany)
which is the currently largest cancer registry in Europe.

We compare to the approaches experimentally in terms of

(1) Performance: via a runtime comparison of our generated code against code that is generated
according to the related approaches;

(2) Portability: based on the Pennycook Metric [Pennycook et al., 2019] which mathematically
defines portability20 as

Φ(0, ?,�) =
⎧⎪⎪⎨⎪⎪⎩

∣� ∣
∑8∈� 1

48 (0,?)
if i is supported, ∀ i ∈ H

0 otherwise

In words: “for a given set of platforms � , the performance portability (PP) Φ of an application
0 solving problem ? is defined as Φ(0, ?,�), where 48(0, ?) is the performance efficiency (i.e.,
a ratio of observed performance relative to some proven, achievable level of performance)
of application 0 solving problem ? on platform 8; value Φ(0, ?,�) is 0, if any platform in �
is unsupported by 0 running ?” [Pennycook et al., 2019]. Consequently, Pennycook defines
portability as a real value in the interval [0, 1]R such that a value close to 1 indicates high
portability and a value close to 0 indicates low portability. Here, platforms � represents a

19We cannot compare to polyhedral compiler TC [Vasilache et al., 2019] which is optimized toward deep learning computa-
tions on GPUs, because TC is not under active development anymore and thus is not working for newer CUDA architectures
[Facebook Research, 2022]. Rasch et al. [2019a] show that our approach—already in its proof-of-concept version—achieves
higher performance than TC for popular computations on real-world datasets.
20Pennycook’s metric is actually called PP. Since PP particularly includes functional portability, we refer to Pennycook’s PP
also more generally as Portability only.
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set of devices (CPUs, GPUs, . . . ), an application 0 is in our context a framework (such as
TVM, a polyhedral compiler, or our approach), problems ? are our case studies, and 48(0, ?)
is computed as the runtime 0best?,8 of the application that achieves the best observed runtime
for problem ? on platform 8 , divided by the runtime of application 0 for problem ? running
on platform 8 .

(3) Productivity: by intuitively arguing that our approach achieves the same/lower/higher produc-
tivity as the related approaches, using the representative example computation Matrix-Vector
Multiplication (MatVec) (Figure 6). Classical code metrics, such as Lines of Code, Constructive
Cost Model [Boehm et al., 1995], McCabe’s Cyclomatic Complexity [McCabe, 1976], and
Halstead Development Effort [Halstead, 1977], are not meaningful for comparing the short
and concise programs in high-level languages as proposed by the related work as well as our
approach.

In the following, after discussing our application case studies, experimental setup, auto-tuning
system, and code generator, we compare our approach to each of the four abovementioned classes
of approaches (1)–(4) in Sections 5.1–5.4.

Application Case Studies
We use for experiments in this section popular example computations from Figure 14 that belong
to different classes of computations:

—Linear Algebra Routines: Matrix Multiplication (MatMul) and Matrix-Vector Multiplication
(MatVec);

—Stencil Computations: Jacobi Computation (Jacobi3D) and Gaussian Convolution (Conv2D)
which differ from linear algebra routines by accessing neighboring elements in their input
data;

—QuantumChemistry:Coupled Cluster (CCSD(T)) computations which differ from linear algebra
routines and stencil computations by accessing their high-dimensional input data in complex,
transposed fashions;

—Data Mining: PRL which differs from the previous computations by relying on a PRL-specific
combine operator and scalar function (instead of straightforward additions or multiplications
as the previous computations);

—Deep Learning: the most time-intensive computations within the popular neural networks
ResNet-50 [He et al., 2015], VGG-16 [Simonyan and Zisserman, 2014], and MobileNet [Howard
et al., 2017], according to their TensorFlow implementations [TensorFlow, 2022a,b,c]. Deep
learning computations rely on advanced variants of linear algebra routines and stencil com-
putations, e.g., MCC and MCC_Capsule for computing convolution-like stencils, instead of the
classical Conv2D variant of convolution (Figure 14)—the deep learning variants are consid-
ered as significantly more challenging to optimize than their classical variants [Barham and
Isard, 2019].

We use for experiments this subset of computations from Figure 14 to make experimenting chal-
lenging for us: the computations differ in major characteristics (as discussed in Section 2.4), e.g.,
accessing neighboring elements in their input data (as stencil computations) or not (as linear algebra
routines), thus usually requiring fundamentally different kinds of optimizations. Consequently,
we consider it challenging for our approach to achieve high performance for our studies, because
our approach relies on a generalized optimization process (discussed in Section 4) that uniformly
applies to any kind of data-parallel computation and also parallel architecture. In contrast, the
optimization processes of the related approaches are often specially designed and tied to a particular
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application class and often also architecture. For example, NVIDIA cuBLAS and Intel oneMKL are
highly optimized specifically for linear algebra routines on either GPU or CPU, respectively, and
TVM is specifically designed and optimized for deep learning computations.

To make experimenting further challenging for us, we consider data sizes and characteristics
either taken from real-world computations (e.g., from the TCCG benchmark suite [Springer and
Bientinesi, 2016] for quantum chemistry computations) or sizes that are preferable for our competi-
tors, e.g., powers of two for which many competitors are highly optimized, e.g., vendor libraries.
For the deep learning case studies, we use data characteristics (sizes, strides, padding strategy,
image/filter formats, etc.) taken from the particular implementations of the neural networks when
computing the popular ImageNet [Krizhevsky et al., 2012] dataset (the particular characteristics
are listed by Rasch [2024], Section D.1, for the interested reader). For all experiments, we use
single precision floating point numbers (a.k.a. float or fp32), as such precision is the default in
TensorFlow and many other frameworks.

Experimental Setup
We run our experiments on a cluster containing two different kinds of GPUs and CPUs:

—NVIDIA Ampere GPU A100-PCIE-40GB
—NVIDIA Volta GPU V100-SXM2-16GB
—Intel Xeon Broadwell CPU E5-2683 v4 @ 2.10GHz
—Intel Xeon Skylake CPU Gold-6140 @ 2.30GHz

We represent the two CUDA GPUs in our formalism using model ASMCUDA+WRP (Example 11). We
rely on model ASMCUDA+WRP, rather than the CUDA’s standard model ASMCUDA (also in Example 11), to
exploit CUDA’s (implicit) warp level for a fair comparison to the related approaches: warp-level
optimizations are exploited by the related approaches (such as TVM), e.g., for shuffle operations
[NVIDIA, 2018] which combine the results of threads within a warp with high performance. To
fairly compare our approach to TVM and PPCG, we avoid exploiting warps’ tensor core intrinsics
[NVIDIA, 2017], in all experiments, which compute the multiplication of small matrices with high
performance [Feng et al., 2023], because these intrinsics are not used in the TVM- and PPCG-
generated CUDA code. For the two CPUs, we rely on model ASMOpenCL (Example 11) for generating
OpenCL code. The same as our approach, TVM also generates OpenCL code for CPUs; Pluto relies
on the OpenMP approach to target CPUs.

For all experiments, we use the currently newest versions of frameworks, libraries, and compilers,
as follows. We compile our generated GPU code using library CUDA NVRTC [NVIDIA, 2022h] from
CUDA Toolkit 11.4, and we use Intel's OpenCL runtime version 18.1.0.0920 for compiling
CPU code. For both compilers, we do not set any flags so that they run in their default modes. For
the related approaches, we use the following versions of frameworks, libraries, and compilers:

—TVM [Apache, 2022] version 0.8.0 which also uses our system’s CUDA Toolkit version 11.4
for GPU computations and Intel's runtime version 18.1.0.0920 for computations on
CPU;

—PPCG [Michael Kruse, 2022] version 0.08.04 using flag --target=cuda for generating CUDA
code, rather than OpenCL, as CUDA is usually better performing than OpenCL on NVIDIA
GPUs, and we use flag --sizes followed by auto-tuned tile sizes—we rely on the Auto-Tuning
Framework (ATF) [Rasch et al., 2021] for choosing optimized tile size values (as we discuss in
the next subsection);
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—Pluto [Uday Bondhugula, 2022] commit 12e075a using flag --parallel for generating
OpenMP-parallelized C code (rather than sequential C), as well as flag --tile to use ATF-
tuned tile sizes for Pluto; the Pluto-generated OpenMP code is compiled via Intel's icx
compiler version 2022.0.0 using the Pluto-recommended optimization flags -O3 -qopenmp;

—NVIDIA cuBLAS [NVIDIA, 2022b] from CUDA Toolkit 11.4, using theNVIDIA-recommended
compiler flags -fast -O3 -DNDEBUG;

—NVIDIA cuDNN [NVIDIA, 2022e] from CUDA Toolkit 11.4, using the NVIDIA-recommended
compiler flags -fast -O3 -DNDEBUG;

—Intel oneMKL [Intel, 2022c] compiled with Intel's icpx compiler version 2022.0.0, using
flags -DMKL_ILP64 -qmkl=parallel -L${MKLROOT}/lib/intel64 -liomp5 -lpthread -
lm -ldl, as recommended for oneMKL by Intel’s Link Line Advisor tool [Intel, 2022a], as well
as standard flags -O3 -NDEBUG;

—Intel oneDNN [Intel, 2022b] also compiled with Intel's icpx compiler version 2022.0.0,
using flags -I${DNNLROOT}/include -L${DNNLROOT}/lib -ldnnl, according to oneDNN’s
documentation, as well as standard flags -03 -NDEBUG;

—EKR [Hentschel et al., 2008] executed via Java SE 1.8.0 Update 281.

We profile runtimes of CUDA and OpenCL programs using the corresponding, event-based
profiling APIs provided by CUDA and OpenCL. For Pluto which generates OpenMP-annotated
C code, we measure runtimes via system call clock_gettime [GNU/Linux, 2022]. In the case of
C++ libraries Intel oneMKL and Intel oneDNN, we use the C++ chrono library [C++ reference,
2022] for profiling. Libraries NVIDIA cuBLAS and NVIDIA cuDNN are also based on the CUDA
programming model; thus, we profile them also via CUDA events. To measure the runtimes of the
EKR Java library, we use Java function System.currentTimeMillis().

All measurements of CUDA and OpenCL programs contain the pure program runtime only (a.k.a.
kernel runtime). The runtime of host code21 is not included in the reported runtimes, as performance
of host code is not relevant for this work and the same for all approaches.

In all experiments, we collect measurements until the 99% confidence interval was within 5% of
our reported means, according to the guidelines for scientific benchmarking of parallel computing
systems by Hoefler and Belli [2015].

Auto-Tuning
The auto-tuning process of our approach relies on the generic ATF [Rasch et al., 2021]. The ATF
framework has proven to be efficient for exploring large search spaces of constrained tuning
parameters (as our space introduced in Section 4). We use ATF, out of the box, exactly as described
by Rasch et al. [2021]: (1) we straightforwardly represent in ATF our search space (Table 1) via tuning
parameters which express the parameters in the table and their constraints; (2) we use ATF’s pre-
implemented cost functions for CUDA and OpenCL to measure the cost of our generated OpenCL
and CUDA codes (in this article, we consider as cost program’s runtime, rather than its energy
consumption or similar); (3) we start the tuning process using ATF’s default search technique
(AUC bandit [Ansel et al., 2014]). ATF then fully automatically determines a well-performing
tuning parameter configuration for the particular combination of a case study, architecture, and
input/output characteristics (size, memory layout, etc.).

For scheduling approach TVM, we use its Ansor [Zheng et al., 2020a] optimization engine which
is specifically designed and optimized toward generating optimized TVM schedules. Polyhedral

21Host code is required in approaches CUDA and OpenCL for program execution: it compiles the CUDA and OpenCL
programs, performs data transfers between host and device, and so on. We rely on the high-level library dOCAL [Rasch et
al., 2018, 2020a] for host code programming in this work.
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compilers PPCG and Pluto do not provide own auto-tuning systems; thus, we use for them also ATF
for auto-tuning, the same as for our approach. For both compilers, we additionally also report their
runtimes when relying on their internal heuristics, rather than on auto-tuning, to fairly compare to
them.

To achieve the best possible performance results for TVM, PPCG, and Pluto, we auto-tune each
of these frameworks individually, for each particular combination of case study, architecture, and
input/output characteristics, the same as for our approach. For example, we start for TVM one
tuning run when auto-tuning case study MatMul for the NVIDIA Ampere GPU on one input size,
and another, new tuning run for a new input size.

Hand-optimized libraries NVIDIA cuBLAS/cuDNN and Intel oneMKL/oneDNN rely on heuristics
provided by experts, rather than auto-tuning. By relying on heuristics, the libraries avoid the
time-intensive process of auto-tuning. However, auto-tuning is well amortized in many application
areas (e.g., deep learning), because the auto-tuned implementations are re-used in many program
runs. Moreover, auto-tuning avoids the complex and costly process of hand optimization by experts,
and it often achieves higher performance than hand-optimized code (as we confirm later in our
experiments), because well-performing optimizations are often not intuitive.

For a fair comparison, we use for each tuning run uniformly the same tuning time of 12 h. Even
though for many computations well-performing tuning results could often be found in less than
12 h, for our approach as well as for other frameworks, we use such generous tuning time for
all frameworks to avoid auto-tuning issues in our reported results—analyzing, improving, and
accelerating the auto-tuning process is beyond the scope of this work and intended for our future
work (as also outlined in Section 8). In particular, TVM’s Ansor optimizer was often able to find
well performing optimizations in 6h of tuning time or less. This is because Ansor explores a small
search space that is designed and optimized for deep learning computations—Ansor’s space is
a proper subset of our space, as our space aims to capture general optimizations that apply to
arbitrary data-parallel computations. However, the focus on deep learning causes Ansor to have
difficulties with optimizing computations not taken from the deep learning area, as we confirm in
our experiments.

To improve the auto-tuning efficiency for our implementations, we rely on a straightforward
cost model that shrinks our search space in Table 1 before starting our ATF-based auto-tuning
process: (1) we always use the same values for Parameters D1, S1, R1 as well as for Parameters
D2, S2, R2, thereby generating the same loop structure for all three phases (de-composition, scalar,
and re-composition) such that the structures can be generated as a fused loop nest; (2) we restrict
Parameters D2, S2, R2 to two values—one value that let threads process outer parts (a.k.a. blocked
access or outer parallelism, respectively) and one to let threads process inner parts (strided access
or inner parallelism); all other permutations are currently ignored for simplicity or because they
have no effect on the generated code (e.g., permutations of Parameters D2, S2, R2 that only differ in
dimension tags belonging to memory layers, as discussed in the previous section); (3) we restrict
Parameters D3, S3, S5, R3 such that each parameter is invariant under different values of 3 of its
input pairs (;,3) ∈ MDH-LVL, i.e., we always copy full tiles in memory regions (and not a full tile
of one input buffer and a half tile of another input buffer, which sometimes might achieve higher
performance when memory is a limited resource).

Our cost model is straightforward and might filter out configurations from our search space that
achieve potentially higher performance than we report for our approach in Sections 5.1–5.4. We
aim to substantially improve our naive cost model in future work, based on operational semantics
for our low-level representation, to improve the auto-tuning quality and to reduce (or even avoid)
tuning time.
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Code Generation
We provide an open source MDH compiler [MDH Project, 2024] for generating executable program
code from expressions in our high-level representation (as illustrated in Figure 4). Our compiler
takes as input the high-level representation of the target computation (Figure 14), in the form of
a Python program, and it fully automatically generates auto-tuned program code, based on the
concepts and methodologies introduced and discussed in this article and the ATF [Rasch et al.,
2021].

In our future work, we aim to integrate our code generation approach into the MLIR compiler
framework [Lattner et al., 2021], building on work-in-progress results [Google SIG MLIR Open
Design Meeting, 2020], thereby making our work better accessible to the community. We consider
approaches such as AnyDSL [Leißa et al., 2018] and BuildIt [Brahmakshatriya and Amarasinghe,
2021] as further, interesting frameworks in which our compiler could be implemented.

5.1 Scheduling Approaches
Performance. Figures 17–22 report the performance of the TVM-generated code, which is in CUDA

for GPUs and in OpenCL for CPUs. We observe that we usually achieve with our approach the high
performance of TVM and often perform even better. For example, in Figure 21, we achieve a speedup >
2× over TVM on NVIDIA Ampere GPU for matrix multiplications as used in the inference phase of the
ResNet-50 neural network—an actually favorable example for TVMwhich is designed and optimized
toward deep learning computations executed onmodernNVIDIAGPUs. Our performance advantage
over TVM is because we parallelize and optimize more efficiently reduction-like computations—in
the case of MatMul (Figure 14), its 3rd-dimension (a.k.a. :-dimension). The difficulties of TVM
with reduction computations become particularly obvious when computing dot products (Dot)
on GPUs (Figure 17): the Dot’s main computation part is a reduction computation (via point-
wise addition, see Figure 14), thus requiring reduction-focused optimization, in particular when
targeting the highly parallel architecture of GPUs: in the case of Dot (Figure 17), our generated
CUDA code exploits parallelization over CUDA blocks, whereas the Ansor-generated TVM code
exploits parallelization over threads within in a single block only, because TVM currently cannot use
blocks for parallelizing reduction computations [Apache TVM Community, 2022a]. Furthermore,
while TVM’s Ansor rigidly parallelizes outer dimensions [Zheng et al., 2020a], our ATF-based
tuning process has auto-tuned our tuning parameters D2, S2, R2 in Table 1 to exploit parallelism
for inner dimensions, which achieves higher performance for this particular MatMul example
used in ResNet-50. Also, for MatMul-like computations, Ansor always caches parts of the input
in GPU’s shared memory, and it computes these cached parts always in register memory. In
contrast, our caching strategy is auto-tunable (via parameters D3, S3 S5, R3 in Table 1), and ATF
has determined to not cache the input matrices into fast memory resources for the MatMul example
in ResNet-50. Surprisingly, Ansor does not exploit fast memory resources for Jacobi stencils
(Figure 18), as required to achieve high performance for them: our generated and auto-tuned CUDA
kernel for Jacobi uses register memory for both inputs (image buffer and filter) when targeting
NVIDIA Ampere GPU (small input size), thereby achieving a speedup over TVM+Ansor of 1.93×
for Jacobi. Most likely, Ansor fails to foresee the potential of exploiting fast memory resources
for Jacobi stencils, because the Jacobi’s index functions used for memory accesses (Figure 14)
are injective. For the MatMul example of ResNet-50’s training phase (Figure 21), we achieve a
speedup over TVM on NVIDIA Ampere GPU of 1.26×, because auto-tuning determined to store parts
of input matrix � as transposed into fast memory (via parameter D4 in Table 1). Storing parts of
the input/output data as transposed is not considered by Ansor as optimization, perhaps because
such optimization must be expressed in TVM’s high-level language, rather than in its scheduling
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Fig. 17. Speedup (higher is better) of our approach for linear algebra routines on GPUs and CPUs over (1)
scheduling approach TVM, (2) polyhedral compilers PPCG (GPU) and Pluto (CPU), as well as (3) hand-optimized
libraries provided by vendors. Dash symbol “-” means that this framework does not support this particular
combination of architecture, computation, and data characteristic.
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Fig. 18. Speedup (higher is better) of our approach for stencil computations on GPUs and CPUs over (1)
scheduling approach TVM, (2) polyhedral compilers PPCG (GPU) and Pluto (CPU), as well as (3) hand-optimized
libraries provided by vendors. Dash symbol “-” means that this framework does not support this particular
combination of architecture, computation, and data characteristic.

language [Apache TVM Community, 2022c]. For MatVec on NVIDIA Ampere GPU (Figure 17), we
achieve a speedup over TVM of 1.22× for the small input size, by exploiting a so-called swizzle
pattern [Phothilimthana et al., 2019]: our ATF tuner has determined to assign threads that are
consecutive in CUDA’s x-dimension to the second MDA dimension (via parameters D2, S2, R2
in Table 1), thereby accessing the input matrix in a GPU-efficient manner (a.k.a coalesced global
memory accesses [NVIDIA, 2022f]). In contrast, for MatVec computations, Ansor assigns threads
with consecutive x-ids always to the first data dimension, in a non-tunable manner, causing lower
performance.
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Fig. 19. Speedup (higher is better) of our approach for quantum chemistry computation Coupled Cluster
(CCSD(T)) on GPUs and CPUs over (1) scheduling approach TVM and (2) polyhedral compilers PPCG (GPU)
and Pluto (CPU). Dash symbol “-” means that this framework does not support this particular combination
of architecture, computation, and data characteristic.

Our positive speedups over TVM on CPU are for the same reasons as discussed above for GPU. For
example, we achieve a speedup of > 3× over TVM on Intel Skylake CPU for MCC (Figure 22) as used
in the training phase of the MobileNet neural network, because we exploit fast memory resources
more efficiently than TVM: our auto-tuning process has determined to use register memory for
the MCC’s second input (the filter buffer F, see Fig. 14) and using no fast memory for the first input
(image buffer I), whereas Ansor uses shared memory rigidly for both inputs of MCC. Moreover,
our auto-tuning process has determined to parallelize the inner dimensions of MCC, while Ansor
always parallelizes outer dimensions. We achieve the best speedup over TVM for MCC on an input size
taken from TVM’s own tutorials [Apache TVM Documentation, 2022b] (Figure 18), rather than from
neural networks (as in Figures 21 and 22). This is because TVM’s MCC size includes large reduction
computations, which are not efficiently optimized by TVM (as discussed above).
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Fig. 20. Speedup (higher is better) of our approach for data mining algorithm Probabilistic Record Linkage
(PRL) on GPUs and CPUs over (1) scheduling approach TVM and (2) polyhedral compilers PPCG (GPU) and
Pluto (CPU), as well as the (3) hand-implemented Java CPU implementation used by EKR—the largest cancer
registry in Europa. Dash symbol “-” means that this framework does not support this particular combination
of architecture, computation, and data characteristic.

The TVM compiler achieves higher performance than our approach for some examples in Figures
17–22. However, in most cases, this is for a technical reason only: TVM uses the NVCC compiler for
compiling CUDA code, whereas our proof-of-concept code generator currently relies on NVIDIA’s
NVRTC library which surprisingly generates less-efficient CUDA assembly than NVCC. In three
cases, the higher performance of TVM over our approach is because our ATF was not able to
find a better performing tuning configuration than TVM’s Ansor optimization engine during our
12h tuning time; the three cases are: (1) MCC from VGG-16’s inference phase on NVIDIA Ampere
GPU (Figure 21), (2) MCC (capsule variant) from VGG-16’s training phase on NVIDIA Ampere GPU
(Figure 21), and (3) MCC (capsule variant) from ResNet-50’s training phase on Intel Skylake
CPU (Figure 22). However, when we manually set the Ansor-found tuning configurations also for
our approach, instead of using the ATF-found configurations, we achieve for these three cases
exactly the same high performance as TVM+Ansor, i.e., the well-performing configurations are
contained in our search space (Table 1). Most likely, Ansor was able to find this well-performing
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Fig. 21. Speedup (higher is better) of our approach for the most time-intensive computations used in deep
learning neural networks ResNet-50, VGG-16, and MobileNet on GPUs over (1) scheduling approach TVM, (2)
polyhedral compilers PPCG (GPU), as well as (3) hand-optimized libraries provided by vendors. Dash symbol
“-” means that this framework does not support this particular combination of architecture, computation,
and data characteristic.
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Fig. 22. Speedup (higher is better) of our approach for the most time-intensive computations used in deep
learning neural networks ResNet-50, VGG-16, and MobileNet on CPUs over (1) scheduling approach TVM, (2)
polyhedral compilers Pluto (CPU), as well as (3) hand-optimized libraries provided by vendors. Dash symbol
“-” means that this framework does not support this particular combination of architecture, computation,
and data characteristic.
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Listing 1. TVM Program Expressing Matrix-Vector Multiplication (MatVec)

1 def MatVec(I, K):
2 M = te.placeholder ((I, K), name='M', dtype='float32 ')
3 v = te.placeholder ((K,), name='v', dtype='float32 ')
4
5 k = te.reduce_axis ((0, K), name='k')
6 w = te.compute(
7 (I,),
8 lambda i: te.sum(M[i, k] * v[k], axis=k)
9 )

10 return [M, v, w]

configuration within the 12 h tuning time, because it explores a significantly smaller search space
that is particularly designed for deep learning computations. To avoid such tuning issues in our
approach, we aim to substantially improve our auto-tuning process in future work: we plan to
introduce an analytical cost model that assists (or even replaces) our auto-tuner, as we also outline
in Section 8.

Note that the TVM compiler crashes for our data mining example PRL, because TVM has difficulties
with computations relying on user-defined combine operators [Apache TVM Community, 2022d].

Portability. Figure 23 reports the portability of the TVM compiler. Our portability measurements
are based on the Pennycook metric where a value close to 1 indicates high portability and a value
close to 0 indicates low portability, correspondingly. We observe that except for the example of
transposed matrix multiplication GEMMT, we always achieve higher portability than TVM. The higher
portability of TVM for GEMMT is because TVM achieves for this example higher performance than
our approach on NVIDIA Volta GPU. However, the higher performance of TVM is only due to the
fact that TVM uses NVIDIA’s NVCC compiler for compiling CUDA code, while we currently rely on
NVIDIA’s NVRTC library which surprisingly generates less-efficient CUDA assembly, as discussed
above.

Productivity. Listing 1 shows howmatrix-vector multiplication (MatVec) is implemented in TVM’s
high-level program representation which is embedded into the Python programming language.
In line 1, the input size (� ,  ) ∈ N × N of matrix " ∈ ) �× (line 2) and vector E ∈ ) (line 3) are
declared, in the form of function parameters; the matrix and vector are named M and v and both are
assumed to contain elements of scalar type ) = float32 (floating point numbers). Line 5 defines a
so-called reduction axis in TVM, in which all values are combined in line 8 via te.sum (addition).
The basic computation part of MatVec—multiplying matrix element M[i,k] with vector element
v[k]—is also specified in line 8.

While we consider the MatVec implementations of TVM (Listing 1) and our approach (Figure 6)
basically on the same level of abstraction, we consider our approach as more expressive in general.
This is because our approach supports multiple reduction dimensions that may rely on different
combine operators, e.g., as required for expressing the MBBS example in Figure 14. In contrast, TVM
is struggling with different combine operators—adding support for multiple, different reduction
dimensions is considered in the TVM community as a non-trivial extension of TVM [Apache
TVM Community, 2020, 2022b]. Also, we consider our approach as slightly less error-prone: we
automatically compute the expected sizes of matrix " (as � ×  ) and vector E (as  ), based on
the user-defined input size (� ,  ) in line 1 and index functions (8, :) ↦ (8, :) for the matrix and
(8, :) ↦ (:) for the vector in line 8 (the formula for computing the sizes is described by Rasch
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Fig. 23. Portability (higher is better), according to Pennycook metric, of our MDH-based approach and TVM
over GPUs and CPUs for case studies. Polyhedral compilers PPCG/Pluto and vendor libraries by NVIDIA and
Intel are not listed: due to their limitation to certain architectures, all of them achieve the lowest portability
of 0 only.

[2024], Definition 8, for the interested reader). In contrast, TVM redundantly requests these matrix
and vector sizes from the user: once in lines 2 and 3 of Listing 1, and again in lines 5 and 7. TVM
uses these sizes for generating the function specification of its generated MatVec code, which
lets TVM generate incorrect low-level code—without issuing an error message—when the user sets
non-matching sizes in lines 2/3 and lines 5/7.
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5.2 Polyhedral Compilers
Performance. Figures 17–22 report the performance achieved by the PPCG-generated CUDA code

for GPUs and of the OpenMP-annotated C code generated by polyhedral compiler Pluto for CPUs.
For a fair comparison, we report for both polyhedral compilers their performance achieved for
ATF-tuned tile sizes (denoted as PPCG+ATF/Pluto+ATF in the figures), as well as the performance
of the two compilers when relying on their internal heuristics instead of auto-tuning (denoted
as PPCG and Pluto). In some cases, PPCG’s heuristic crashed with error “too many resources
requested for launch,” because the heuristic seems to not take into account device-specific
constraints, e.g., limited availability of GPUs’ fast memory resources.

We observe from Figures 17–22 that in all cases, our approach achieves better performance
than PPCG and Pluto—sometimes by multiple orders of magnitude, in particular for deep learning
computations (Figures 21 and 22). This is caused by the rigid optimization goals of PPCG and Pluto,
e.g., always parallelizing outer dimensions, which causes severe performance losses. For example,
we achieve a speedup over PPCG of > 13× on NVIDIA Ampere GPU and of > 60× over Pluto on Intel
Skylake CPU for MCC as used in the inference phase of the real-world ResNet-50 neural network.
Compared to PPCG, our better performance for this MCC example is because PPCG has difficulties
with efficiently parallelizing computations relying on more than three dimensions. Most likely, this
is because CUDA offers per default three dimensions for parallelization (called x, y, z dimension
in CUDA). However, MCC relies on seven parallelizable dimensions (as shown in Figure 14), and
exploiting the parallelization opportunities of the four further dimensions (as done in our generated
CUDA code) is essential to achieve high performance for this MCC example from ResNet-50. Our
performance advantage over Pluto for the MCC example is because Pluto parallelizes the outer
dimensions of MCC only (whereas our approach has the potential to parallelize all dimensions);
however, the dimension has a size of only 1 for this real-world example, resulting in starting only 1
thread in the Pluto-generated OpenMP code.

For dot products Dot (Figure 17), we can observe that PPCG fails to generate parallel CUDA code,
because PPCG cannot parallelize and optimize computations which rely solely on combine operators
different from concatenation, as we also discuss in Section 6.2. In Section 6.2, we particularly discuss
that we do not consider the performance issues of PPCG and Pluto as weaknesses of the polyhedral
approach in general, but of the particular polyhedral transformations chosen for PPCG and Pluto.

Note that Pluto crashes for our data mining example (Figure 20), with “Error extracting
polyhedra from source file,” because the scalar function of this example is too complex for
Pluto (it contains if-statements). Moreover, Intel’s icx compiler struggles with compiling the
Pluto-generated OpenMP code for quantum chemistry computations (Figure 19): we aborted icx’s
compilation process after 24 h compilation time. The icx’s issue with the Pluto-generated code is
most likely because of too aggressive loop unrolling of Pluto—the Pluto-generated OpenMP code
has often a size > 50 MB for our real-world quantum chemistry examples.

Portability. Since PPCG and Pluto are each designed for particular architectures only, they
achieve the lowest portability of 0 for all our studies in Figure 23, according to the Pennycook
metric. To simplify for PPCG and Pluto the portability comparison with our approach, we compute
the Pennycook metric additionally also for two restricted sets of devices: only GPUs to make
comparison against our approach easier for PPCG, and only CPUs to make comparison easier for
Pluto.

Figures 24–28 report the portability of PPCGwhen considering only GPUs, aswell as the portability
of Pluto for only CPUs. We observe that we achieve higher portability for all our studies, as we
constantly achieve higher performance than the two polyhedral compilers for the studies.
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Listing 2. PPCG/Pluto Program Expressing Matrix-Vector Multiplication (MatVec)

1 for( int i = 0 ; i < I ; ++i )
2 for( int k = 0 ; k < K ; ++k )
3 w[i] += M[i][k] * v[k];

Note that even when restricting our set of devices to only GPUs for PPCG or only CPUs for Pluto,
the two polyhedral compilers still achieve a portability of 0 for some examples, because they fail to
generate code for them (as discussed above).

Productivity. Listing 2 shows the input program of polyhedral compilers PPCG and Pluto for
MatVec. Both take as input easy-to-implement, straightforward, sequential C code. We consider
these two polyhedral compilers as more productive than our approach (as well as scheduling and
functional approaches, and also polyhedral compilers that take DSL programs as input, such as TC
[Vasilache et al., 2019]), because both compilers fully automatically generate optimized parallel
code from unoptimized, sequential program code.

Rasch et al. [2020b,c] show that our approach can achieve the same high user productivity as
polyhedral compilers, by using a polyhedral frontend for our approach: we can alternatively take
as input the same sequential program code as PPCG and Pluto, instead of programs implemented
in our high-level program representation (as in Figure 6). The sequential input program is then
transformed via polyhedral tool pet [Verdoolaege and Grosser, 2012] to its polyhedral representation
which is then automatically transformed to our high-level program representation, according to
the methodology presented by Rasch et al. [2020b,c].

5.3 Functional Approaches
Our previous work [Rasch et al., 2019a] already shows that while functional approaches provide a
solid formal foundation for computations, they typically suffer from performance and portability
issues. For this, our previous work compares our approach (in its original, proof-of-concept imple-
mentation [Rasch et al., 2019a]) to the state-of-the-art Lift [Steuwer et al., 2015] framework which,
to the best of our knowledge, has so far not been improved toward higher performance and/or better
portability. Consequently, we refrain from a further performance and portability evaluation of Lift
and focus in the following on analyzing and discussing the productivity potentials of functional
approaches, using again the state-of-the-art Lift approach as running example. In Section 6.3, we
discuss the performance and portability issues of functional approaches from a general perspective.

Performance/Portability. Already experimentally evaluated in previous work [Rasch et al., 2019a]
and discussed in general terms in Section 6.3.

Productivity. Listing 3 shows how MatVec is implemented in Lift. In line 1, type parameters n
and m are declared, via the Lift building block nFun. Line 2 declares a function fun that takes as
input a matrix of size m× n and a vector of size n, both consisting of floating point numbers (float).
The computation of MatVec is specified in lines 3 and 4. In line 3, Lift’s map pattern iterates over
all rows of the matrix, and the zip pattern in line 4 combines each row pair-wise with the input
vector. Afterward, multiplication * is applied to each pair, using Lift’s map pattern again, and the
obtained products are finally combined via addition + using Lift’s reduce pattern.

Already for expressing MatVec, we can observe that Lift relies on a vast set of small, functional
building blocks (five building blocks for MatVec: nFun, fun, map, zip, and reduce), and the blocks
have to be composed and nested in complex ways for expressing computations. Consequently,
we consider programming in Lift and Lift-like approaches as complex and their productivity
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Listing 3. Lift Program Expressing Matrix-Vector Multiplication (MatVec)

1 nFun(n => nFun(m =>
2 fun(matrix: [[ float]n]m => fun(xs: [float]n =>
3 matrix :>> map(fun(row =>
4 zip(xs, row) :>> map (*) :>> reduce(+, 0)
5 )) )) ))

for the user as limited. Moreover, the approaches often need fundamental extension for targeting
new kinds of computations, e.g., so-called macro-rules which had to be added to Lift to efficiently
target matrix multiplications [Remmelg et al., 2016] and primitives slide and pad together with
optimization overlapped tiling for expressing stencil computations [Hagedorn et al., 2018]. This need
for extensions limits the expressivity of the Lift language and thus further hinders productivity.

In contrast to Lift, our approach relies on exactly three higher-order functions (Figure 5) to
express various kinds of data-parallel computations (Figure 14): (1) inp_view (Definition 7) which
prepares the input data; our inp_view function is designed as general enough to subsume, in a
structured way, the subset of all Lift patterns intended to change the view on input data, including
patterns zip, pad, and slide; (2) md_hom (Definition 3) expresses the actual computation part,
and it subsumes the Lift patterns performing actual computations (fun, map, reduce, . . . ); (3)
out_view (Definition 9) expresses the view on output data and is designed to work similarly as
function inp_view (Lemma 2). Our three functions are always composed straightforwardly, in
the same, fixed order (Figure 5), and they do not rely on complex function nesting for expressing
computations.

Note that even though our language is designed as minimalistic, it should cover the expressivity
of the Lift language22 and beyond: for example, we are currently not aware of any Lift program
being able to express the prefix-sum examples in Figure 14. For the above reasons, we consider
programming in our high-level language as more productive for the user than programming in
Lift-like, functional-style languages. Furthermore, as discussed in Section 5.2, our approach can
take as input also straightforward, sequential program code, which further contributes to the
productivity of our approach.

5.4 Domain-Specific Approaches
Performance. Figures 17–22 report for completeness and also performance results achieved

by domain-specific approaches. Since domain-specific approaches are specifically designed and
optimized for particular application domains and often also architectures (e.g., only linear algebra
routines on only GPU), we consider comparing to them as most challenging for us: our approach
is designed and optimized for data-parallel computations in general, from arbitrary application
domains (the same as also polyhedral compilers and many functional approaches), and our approach
is also designed as generic in the target parallel architecture.

We observe in Figures 17–22 that the domain-specific libraries NVIDIA cuBLAS/cuDNN (for linear
algebra routines and convolutions on GPUs) and Intel oneMKL/oneDNN (for linear algebra routines
and convolutions on CPUs) sometimes perform better and sometimes worse than our approach.

22This work is focused on dense computations. Lift supports sparse computations [Pizzuti et al., 2020] which we consider
as future work for our approach (as also outlined in Section 8). We consider Lift’s approach, based on their so-called
position dependent arrays, as a great inspiration for our future goal.
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The better performance of libraries over our approach is most likely23 because the libraries inter-
nally rely on assembly-level optimizations, while we currently focus on the higher CUDA/OpenCL
level of abstraction which offers less optimization opportunities [Goto and Geijn, 2008; Lai and
Seznec, 2013]. The cuBLASEx extension of cuBLAS achieves in one case—MatMul on NVIDIA Volta
GPU for square 1024 × 1024 input matrices—significantly higher performance than our approach.
The high performance is achieved by cuBLASEx when using its CUBLAS_GEMM_ALGO1_TENSOR_OP
algorithm variant, which casts the float-typed inputs implicitly to the half precision type (a.k.a.
half or fp16), allowing cuBLASEx to exploit the GPU’s tensor core extension [NVIDIA, 2017].
Thereby, cuBLASEx achieves significantly higher performance than our approach, because tensor
cores compute small matrix multiplication immediately in hardware; however, at the cost of a
significant precision loss: the half scalar type achieves only half the accuracy achieved by scalar
type float. When using cuBLASEx’s default algorithm CUBLAS_GEMM_DEFAULT (rather than algo-
rithm CUBLAS_GEMM_ALGO1_TENSOR_OP), which retains the float type and thus meets the accuracy
expected from the computation, we achieve a speedup of 1.11× over cuBLASEx.24

The reason for the better performance of our approach over NVIDIA and Intel libraries is most
likely because our approach allows generating code that is also optimized (auto-tuned) for data
characteristics, which is important for high performance [Tillet and Cox, 2017]. In contrast, the
vendor libraries usually rely on pre-implemented code that is optimized toward only average high
performance for a range of data characteristics (size, memory layout, etc.). By relying on these
fixed, pre-implemented code, the libraries avoid the auto-tuning overhead. However, auto-tuning is
often amortized, particularly for deep learning computations—the main target of libraries NVIDIA
cuDNN und Intel oneDNN—because the auto-tuned implementations are re-used in many program
runs. Moreover, we achieve better performance for convolutions (Figure 18), because the libraries
re-use optimizations for these computations originally intended for linear algebra routines [Li et
al., 2016], whereas our optimization space (Table 1) is designed for data-parallel computations in
general and not as specifically oriented toward linear algebra.

Compared to the EKR library (Figure 20), we achieve higher performance, because the EKR’s Java
implementation inefficiently handles memory: the library is implemented using Java’s ArrayList
data structure which is convenient to use for the Java programmer, but inefficient in terms of
performance, because the structure internally performs costly memory re-allocations.

Portability. Similar to polyhedral compilers PPCG and Pluto, the domain-specific approaches
work for certain architectures only and thus achieve the lowest portability of 0 only in Figure 23
for our studies. The domain-specific approaches are also restricted to a narrow set of studies, e.g.,
only linear algebra routines as NVIDIA cuBLAS and Intel oneMKL or only data mining example
PRL as EKR. Consequently, the approaches achieve for these unsupported studies also a portability
of only 0 in Figures 24–28 in which our portability evaluation is limited to only GPUs or CPUs,
respectively, to make comparison against our approach easier for the vendor libraries.

For their target studies, domain-specific approaches achieve high portability. This is because the
approaches are specifically designed and optimized toward these studies, e.g., via assembly-level
optimizations which are currently beyond the scope of our work and considered as future work for
our approach (see Section 8).

23Since the Intel and NVIDIA libraries are not open source, we cannot explain their performance behavior with certainty.
24For the interested reader, Rasch [2024] (Section D.2) reports the runtime of cuBLASEx for all its algorithm variants,
including reports for the accuracy achieved by the different variants.
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Fig. 24. Portability (higher is better), according to Pennycook metric, for linear algebra routines computed on
only GPUs or CPUs, respectively. The restriction simplifies for frameworks with limited architectural support
(such as polyhedral compilers and vendor libraries) the portability comparisons against our approach.

Fig. 25. Portability (higher is better), according to Pennycook metric, for stencil computations computed on
only GPUs or CPUs, respectively. The restriction simplifies for frameworks with limited architectural support
(such as polyhedral compilers and vendor libraries) the portability comparisons against our approach.
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Fig. 26. Portability (higher is better), according to Pennycook metric, for quantum chemistry computation
Coupled Cluster (CCSD(T)) computed on only GPUs or CPUs, respectively. The restriction simplifies for
frameworks with limited architectural support (such as polyhedral compilers and vendor libraries) the
portability comparisons against our approach.

Fig. 27. Portability (higher is better), according to Pennycook metric, for data mining algorithm Probabilistic
Record Linkage (PRL) computed on only GPUs or CPUs, respectively. The restriction simplifies for frame-
works with limited architectural support (such as polyhedral compilers and vendor libraries) the portability
comparisons against our approach.

Productivity. Listing 4 shows the implementation of MatVec in domain-specific approach
NVIDIA cuBLAS; the implementation of MatVec in other domain-specific approaches, e.g.,
Intel oneMKL, is analogous to the implementation in Listing 4.

We consider domain-specific approaches as most productive for their target domain: in the case
of MatVec, the user simply calls the high-level function cublasSgemv and passes to it the input
matrices (omitted via ellipsis in the listing) together with some meta information (memory layout
of matrices, etc); cuBLAS then automatically starts the GPU computation for MatVec.
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Fig. 28. Portability (higher is better), according to Pennycookmetric, for deep learning computations computed
on only GPUs or CPUs, respectively. The restriction simplifies for frameworks with limited architectural
support (such as polyhedral compilers and vendor libraries) the portability comparisons against our approach.
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Listing 4. cuBLAS Program Expressing Matrix-Vector Multiplication (MatVec)

1 cublasSgemv( /* ... */ );

Besides the fact that domain-specific approaches typically target only particular target architec-
tures, a further fundamental productivity issue of domain-specific approaches is that they can only
be used for a narrow class of computations only, e.g., only linear algebra routines as NVIDIA cuBLAS
and Intel oneMKL. Moreover, in the case of domain-specific libraries from NVIDIA and Intel, it
is often up to the user to manually choose among different, semantically equal but differently
performing implementations for high performance. For example, the cuBLAS library offers three
different routines for computing matrix multiplications: (1) cublasSgemm (part of standard cuBLAS),
(2) cublasGemmEx (part of the cuBLASEx extension of cuBLAS), and (3) routine cublasLtMatmul
(part of the cuBLASLt extension). These routines often also offer different, so-called algorithms
(e.g., 42 algorithm variants in the case cuBLASEx) which impact the internal optimization process.
When striving for the highest performance potentials of libraries, the user is in charge of naively
testing each possible combination of routine and algorithm variant (as we have done in Figures
17–22 to make experimenting challenging for us). In addition, the user must be aware that different
combinations of routines and algorithms can produce results of reduced accuracy (as discussed
above), which can be critical for accuracy-sensitive use cases.

6 Related Work
Three major classes of approaches currently focus on code generation and optimization for data-
parallel computations: (1) scheduling, (2) polyhedral, and 3) functional. In the following, we compare
in Sections 6.1–6.3 our approach to each of these three classes—in terms of performance, portability,
and productivity. In contrast to Section 5, which has compared our approach against these classes
experimentally, this section is focused on discussions in a more general, non-experimental context.
Afterward, we outline domain-specific approaches in Section 6.4, which are specifically designed and
optimized toward their target application domains. In Section 6.5, we outline approaches focusing
on optimizations that operate at the algorithmic level of abstraction (and thus at a higher abstraction
level than our approach); we consider these higher-level approaches as greatly combinable with
our work. Finally, we discuss in Section 6.6 the differences between our approach introduced in
this article and the already existing work on MDHs.

6.1 Scheduling Approaches
Popular examples of scheduling approaches include UTF [Kelly and Pugh, 1998], URUK [Girbal
et al., 2006], CHill [Chen et al., 2008, Khan et al., 2013], Halide [Ragan-Kelley et al., 2013], Clay
[Bagnères et al., 2016], TVM [Chen et al., 2018a], TeML [Susungi et al., 2020], Tiramisu [Baghdadi
et al., 2019], DaCe [Ben-Nun et al., 2019], Fireiron [Hagedorn et al., 2020a], Elevate [Hagedorn
et al., 2020b], DISTAL [Yadav et al., 2022], and LoopStack [Wasti et al., 2022]. While scheduling
approaches usually achieve high performance, they often have difficulties with achieving portability
and productivity, as we discuss in the following.25

25Rasch et al. [2023] introduce (optionally) a scheduling language for MDH to incorporate expert knowledge into MDH’s
optimization process, e.g., to achieve (1) better optimization, as an auto-tuning system might not always make the same
high-quality optimization decisions as a human expert, and/or (2) faster auto-tuning, as some (or even all) optimization
decisions might be made by the expert user and thus are not left to the costly auto-tuner.
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Performance. Scheduling approaches usually achieve high performance. For this, the approaches
incorporate human expert knowledge into their optimization process which is based on two major
steps: (1) a human expert implements an optimization program (a.k.a schedule) in a so-called
scheduling language—the program specifies the basic optimizations to perform, such as tiling
and parallelization; (2) an auto-tuning system (or a human hardware expert) chooses values of
performance-critical parameter of the optimizations implemented in the schedule, e.g., particular
values of tile sizes and concrete numbers of threads.

Our experiments in Section 5 show that compared to the state-of-the-art scheduling approach
TVM (using its recent Ansor optimizer [Zheng et al., 2020a] for schedule generation), our approach
achieves competitive and sometimes even better performance, e.g., speedups up to 2.22× on GPU
and 3.55× on CPU over TVM+Ansor for computations taken from TVM’s favorable application
domain (deep learning). Section 5 discusses that our better performance is due to the design and
structure of our general optimization space (Table 1) which can be efficiently explored — fully
automatically — using state-of-the-art auto tuning techniques [Rasch et al., 2021]. We focus on
TVM in our experiments (rather than, e.g. Halide) to make experimenting challenging for us:
TVM+Ansor has proved to achieve higher performance on GPUs and CPUs than popular state-of-
practice approaches [Zheng et al., 2020a], including Halide, pyTorch [Paszke et al., 2019], and the
recent FlexTensor optimizer [Zheng et al., 2020b].

Recent approach TensorIR [Feng et al., 2023] is a compiler for deep learning computations that
achieves higher performance than TVM on NVIDIA GPUs. However, this performance gain over
TVM is mainly achieved by exploiting the domain-specific tensor core [NVIDIA, 2017] extensions
of NVIDIA GPUs, which compute in hardware the multiplications of small, low-precision 4 × 4
matrices. For this, TensorIR introduces the concept of blocks which represent sub-computations,
e.g., multiplying 4 × 4 matrices. These blocks are than mapped by TensorIR to domain-specific
hardware extensions, which often leads to high performance.

While domain-specific hardware extensions are not targeted in this article, we can naturally ex-
ploit them in our approach, similar to TensorIR, as we plan for our futurework: the sub-computations
targeted by the current hardware extensions, such as matrix multiplication on 4×4matrices, can be
straightforwardly expressed in our approach (Figure 14). Thus, we can match these sub-expressions
in our low-level representation and map them to hardware extensions in our generated code. For
this, instead of relying on a full partitioning in our low-level representation (as in Figure 15) such
that we can apply scalar function 5 to the fully de-composed data (consisting of a single scalar value
only in the case of a full partitioning), we plan to rely on a coarser-grained partitioning schema,
e.g., down to only 4 × 4 matrices (rather than 1 × 1 matrices, as in the case of a full partitioning).
This allows us replacing scalar function 5 (which in the case of matrix multiplication is a simple
scalar multiplication ∗) with the operation supported by the hardware extension, such as matrix
multiplication on 4 × 4 matrices. We expect for our future work to achieve the same advantages
over TensorIR as over TVM, because apart from supporting domain-specific hardware extensions,
TensorIR is very similar to TVM.

Portability. While scheduling approaches achieve high performance, they tend to struggle
with achieving portability. This is because even though the approaches often offer different, pre-
implemented backends (e.g., a CUDA backend to target NVIDIA GPUs and an OpenCL backend for
CPUs), they do not propose any structured methodology about how new backends can be added,
e.g., for potentially upcoming architectures, with potentially deeper memory and core hierarchies
than GPUs and CPUs.This might be particularly critical (or requiring significant development effort)
for the application area of deep learning which is the main target of many scheduling approaches,
e.g., TVM and TensorIR, and for which new architectures are arising continuously [Hennessy and
Patterson, 2019].
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In contrast, we introduce in this article a formally precise recipe for correct-by-construction code
generation in different backends (including OpenMP, CUDA, and OpenCL), generically in the target
architecture: we introduce an architecture-agnostic low-level representation (Section 3) as target
for our high-level programs (Section 2), and we describe formally how our high-level programs are
automatically lowered to our low-level representation (Section 4), based on the architecture-agnostic
optimization space in Table 1. Rasch [2024] (Section E) outlines how executable, imperative-style
program code is straightforwardly generated from low-level expressions, which we plan to discuss
and illustrate in detail in our future work.

Productivity. Scheduling approaches rely on a two-step optimization process, as discussed above:
implementing a schedule (first step) and choosing optimized values of performance-critical param-
eters within that schedule (second step). While the second step often can be easily automatized,
e.g., via auto-tuning [Chen et al., 2018b], the first step—implementing a schedule—usually has to be
conducted manually by the user to achieve high performance, which requires expert knowledge
and thus hinders productivity. The lack of formal foundation of many scheduling approaches
further complicates implementing schedules for the user, as implementation becomes error prone
and hardly predictable. For example, Fireiron’s schedules can achieve high performance, close to
GPUs’ peak, but schedules in Fireiron can easily generate incorrect low-level code: Fireiron cannot
guarantee that optimizations expressed in its scheduling language are semantics preserving, e.g.,
based on a formal foundation as done in this work, making programming Fireiron’s schedules error
prone and complex for the user. Similarly, TVM is sometimes unable to detect user errors in both
its high-level language (as discussed in Section 5.1) as well as scheduling language [Apache TVM
Community, 2022e]. Safety in parallel programming is an ongoing major demand, in particular
from industry [Khronos, 2022a].

Auto schedulers, such as Halide’s optimization engine [Mullapudi et al., 2016] and TVM’s recent
Ansor [Zheng et al., 2020a], aim to automatically generate well-performing, correct schedules for
the user. However, a major flaw of the current auto schedulers is that even though they work
well for some computations (e.g., from deep learning, as TVM’s Ansor), they may perform worse
for others. For example, our approach achieves a speedup over TVM+Ansor of > 100× already
for straightforward dot products (Figure 17). This is because Ansor does not exploit multiple
thread blocks and uses only a small number of threads for reduction computations. While such
optimization decisions are often beneficial for reductions as used in deep learning (e.g., within
the computations of convolutions and matrix multiplications on deep learning workloads, be-
cause parallelization can be better exploited for outer loops of these computations), these rigid
optimization decisions of Ansor may perform worse in other contexts (e.g., for computing dot
product).

To avoid the productivity issues of scheduling approaches, we have designed our optimization
process as fully auto-tunable, thereby freeing the user from the burden and complexity of making
complex optimization decisions. Our optimization space (Table 1) is designed as generic in the target
application area and hardware architecture, thereby achieving high performance for various combi-
nations of data-parallel computations and architectures (Section 5). Correctness of optimizations is
ensured in our approach by introducing a formal foundation that enables mathematical reasoning
about correctness. Particularly, our optimization process is designed as correct-by-construction,
meaning that any valid optimization decisions (i.e., a particular choice of tuning parameters in Table
1 that satisfy the constraints) leads to a correct expression in our low-level expression (as in Figure
15). In contrast, approaches such as introduced by Clément and Cohen [2022] formally validate
optimization decisions of scheduling approaches in already generated low-level code. Thereby,
such approaches work potentially for arbitrary scheduling approaches (Halide, TVM, . . . ), but
the approaches cannot save the user at the high abstraction level from implementing incorrect
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optimizations (e.g., via easy-to-understand, high-level error messages indicating that an invalid
optimization decisions is made) or restricting the optimization space otherwise to valid decisions
only, e.g., for an efficient auto-tuning process, because the approaches check already generated
program code.

Scheduling approaches often also suffer from expressivity issues. For example, Fireiron is limited
to computing only matrix multiplications on only NVIDIA GPUs, and TVM does not support
computations that rely on multiple combine operators different from concatenation [Apache TVM
Community, 2020, 2022b], e.g., as required for expressing the MBBS example in Figure 14. Also, TVM
has difficulties with user-defined combine operators [Apache TVM Community, 2022d] and thus
crashes for example PRL in Figure 14. In contrast to TVM, we introduce a formal methodology about
how to manage different kinds of arbitrary, user-defined combine operators (Section 3), which is
considered challenging [Apache TVM Community, 2020].

6.2 Polyhedral Approaches
Polyhedral approaches, as introduced by Feautrier [1992], as well as Pluto [Bondhugula et al., 2008b],
Polly [Grosser et al., 2012], PPCG [Verdoolaege et al., 2013], Polyhedral Tensor Schedulers [Meister et
al., 2019], TC [Vasilache et al., 2019], and AKG [Bastoul et al., 2022] rely on a formal, geometrically
inspired representation, called polyhedral model. Polyhedral approaches often achieve high user
productivity, e.g., by automatically parallelizing and optimizing straightforward sequential code.
However, the approaches tend to have difficulties with achieving high performance and portability
when used for generating low-level program code, as we outline in the following. In Section
6.5, we revisit the polyhedral approach as a potential frontend for our approach, as polyhedral
transformations have proven to be efficient when used for high-level code optimizations (e.g., loop
skewing [Wolf and Lam, 1991]), rather than low-level code generation.

Performance. Polyhedral compilers tend to struggle with achieving their full performance po-
tential. We argue that this performance issue of polyhedral compilers is mainly caused by the
following two major reasons.

While we consider the set of polyhedral transformation (so-called affine transformation) as
broad, expressive, and powerful, each polyhedral compiler implements a subset of expert-chosen
transformations. This subset of transformations, as well as the application order of transformations,
are usually fixed in a particular polyhedral compiler and chosen toward specific optimization goals
only, e.g., coarse-grained parallelization and locality-aware data accesses (a.k.a. Pluto algorithm
[Bondhugula et al., 2008a]), causing the search spaces of polyhedral compilers to be a proper
subset of our space in Table 1. Consequently, computations that require for high performance
other subsets of polyhedral transformations and/or application orders of transformations (e.g.,
transformations toward fine-grained parallelization) might not achieve their full performance
potential when compiled with a particular polyhedral compiler [Consolaro et al., 2024].

In contrast to the currently existing polyhedral compilers, we have designed our optimization
process as generic in goals: for example, our space is designed such that the degree of parallelization
(coarse, fine, . . . ) is fully auto-tunable for the particular combination of target architecture and
computation to optimize. We consider it as an interesting future work to investigate the strength
and weaknesses of the polyhedral model for expressing our generic optimization space.

We see the second reason for potential performance issues in polyhedral compilers in their
difficulties with reduction-like computations. This is mainly caused by the fact that the polyhedral
model captures less semantic information than the high-level program representation introduced
in Section 2 of this article: combine operators which are used to combine the intermediate results
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of computations (e.g., operator + from Example 2 for combining the intermediate results of the dot
products within matrix multiplication) are not explicitly represented in the polyhedral model; the
polyhedral model is rather focused on modeling memory accesses and their relative order only.
Most likely, these semantic information are missing in the polyhedral model, because polyhedral
approaches were originally intended to fully automatically optimize loop-based, sequential code
(such as Pluto and PPCG)—extracting combine operators automatically from sequential code is
challenging and often even impossible (Rice’s theorem).

In contrast, our proposed high-level representation explicitly captures combine operators (Figure
14), by requesting these operators explicitly from the user. This is important, because the operators
are often required for generating code that fully utilizes the highly parallel hardware of state-of-
the-art architectures (GPUs, etc.), as discussed in Section 5. Similarly to our approach, polyhedral
compiler TC also requests combine operators explicitly from the user. However, TC is restricted to
operators + (addition), * (multiplication), min (minimum), and max (maximum) only, thereby TC
is not able to express important examples in Figure 14, e.g., PRL which is popular in data mining.
Moreover, TC outsources the computation of its combine operators to the NVIDIA CUB library
[NVIDIA, 2022a]; most likely as a workaround, because TC relies on the polyhedral model which is
not designed to capture and exploit semantic information about combine operators for optimization.
Thereby, TC is dependent on external approaches for computing combine operators, which might
not always be available (e.g., for upcoming architectures).

Workarounds have been proposed by the polyhedral community to target reduction-like compu-
tations [Doerfert et al., 2015; Reddy et al., 2016]. However, these approaches are limited to a subset
of computations, e.g., by not supporting user-defined scalar types [Doerfert et al., 2015] (as required
for our PRL example in Figure 14), or by being limited to GPUs only [Reddy et al., 2016]. Comparing
the semantic information captured in the polyhedral model vs. our MDH-based representation
have been the focus of discussions between polyhedral experts and MDH developers [Google SIG
MLIR Open Design Meeting, 2020].

Portability. The polyhedral approach, in its general form, is a framework offering transformation
rules (affine transformations), and each individual polyhedral compiler implements a set of such
transformations which are then instantiated (e.g., with particular tile sizes) and applied when
compiling a particular application. However, individual polyhedral compilers (e.g., PPCG and
Pluto) apply a fixed set of affine transformations, thereby rigidly optimizing for a particular target
architecture only, e.g., only GPU (as PPCG) or only CPU (as Pluto), and it remains open which
affine transformations have to be used and how for other architectures, e.g., upcoming accelerators
for deep learning computations [Hennessy and Patterson, 2019] with potentially more complex
memory and core hierarchies than GPUs and CPUs. Moreover, while we introduce an explicit
low-level representation (Section 3), the polyhedral approach does not introduce representations
on different abstraction levels: the model relies on one representation that is transformed via
affine transformations. Apart from the ability of our low-level representation to handle combine
operators (which we consider as complex and important), we see the advantages of our explicit
low-level representation in, for example, explicitly representing memory regions, which allows
formally defining important correctness constraints, e.g., that GPU architectures allow combining
the results of threads in designated memory regions only. Furthermore, our low-level representation
also allows straightforwardly generating executable code from it (shown by Rasch [2024], Section
E, and planned to be discussed thoroughly in future work). In contrast, code generation from
the polyhedral model has proven challenging [Bastoul et al., 2022; Vasilache et al., 2022; Grosser
et al., 2015].
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Productivity. Most polyhedral compilers achieve high user productivity, by fully automatically
parallelizing and optimizing straightforward sequential code (as Pluto and PPCG). Our approach
currently relies on a Domain-Specific Language (DSL) for expressing computations, as discussed in
Section 2; thus, our approach can be considered as less productive than many polyhedral compilers.
However, Rasch et al. [2020b, c] show that DSL programs in our approach can be automatically
generated from sequential code (optionally annotated with simple, OpenMP-like directives for
expressing combine operators, enabling advanced optimizations), by using polyhedral tool pet
[Verdoolaege and Grosser, 2012] as a frontend for our approach. Thereby, we are able to achieve
the same, high user productivity as polyhedral compilers. We consider this direction—combing the
polyhedral model with our approach—as promising, as it enables benefitting from the advantages of
both directions: optimizing sequential programs and making them parallelizable using polyhedral
techniques (like loop skewing, as also outlined in Section 6.5), and mapping the optimized and
parallelizable code eventually to parallel architectures based on the concepts and methodologies
introduced in this article.

6.3 Functional Approaches
Functional approaches map data-parallel computations that are expressed via small, formally
defined building blocks (a.k.a. patterns [Gorlatch and Cole, 2011], such as map and reduce) to the
memory and core hierarchies of parallel architectures, based on a strong formal foundation. Notable
functional approaches include Accelerate [Chakravarty et al., 2011], Obsidian [Svensson et al.,
2011], so-called skeleton libraries [Steuwer et al., 2011, Aldinucci et al., 2017, Enmyren and Kessler,
2010, Ernstsson et al., 2018], and the modern Lift approach [Steuwer et al., 2015] (recently also
known as RISE [Steuwer et al., 2022]).

In the following, as functional approaches usually follow the same basic concepts and method-
ologies, we focus on comparing to Lift, because Lift is more recent than, e.g., Accelerate and
Obsidian.

Performance. Functional approaches tend to struggle with achieving their full performance
potential, often caused by the design of their optimization spaces. For example, analogously to our
approach, functional approach Lift relies on an internal low-level representation [Steuwer et al.,
2017] that is used as target for Lift’s high-level programs. However, Lift’s transformation process,
from high level to low level, turned out to be challenging: Lift’s lowering process relies on an
infinitely large optimization space—identifying a well-performing configuration within that space
is too complex to be done automatically in general, due to the space’s large and complex structure.
As a workaround, Lift currently uses approach Elevate [Hagedorn et al., 2020b] to incorporate
user knowledge into the optimization process; however, at the cost of productivity, as manually
expressing optimization is challenging, particularly for non-expert users.

In contrast, our optimization process is designed as auto-tunable (Table 1), thereby achieving
fully automatically high performance, as confirmed in our experiments (Section 5), without in-
volving the user for optimization decisions. In particular, our previous work already showed that
our approach—even in its original, proof-of-concept implementation [Rasch et al., 2019a]—can
significantly outperform Lift on GPU and CPU [Rasch et al., 2019a]. Our performance advantage
over Lift is mainly caused by the design of our optimization process: relying on formally defined
tuning parameters (Table 1), rather than on formal transformation rules that span a too large and
complex search space (as Lift), thereby contributing to a simpler, fully auto-tunable optimization
process.

Portability. The current functional approaches usually are designed and optimized toward code
generation in a particular programming model only. For example, Lift inherently relies on the
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OpenCL programming model, because OpenCL works for multiple kinds of architectures: NVIDIA
GPU, Intel CPU, and so on. However, we see two major disadvantages in addressing the portability
issue via OpenCL only: (1) GPU-specific optimizations (such as shuffle operations [NVIDIA, 2018])
are available only in the CUDA programming model, but not in OpenCL; (2) the set of OpenCL-
compatible devices is broad but still limited; in particular, in the new golden age for computer
architectures [Hennessy and Patterson, 2019], upcoming architectures are arising continuously
and may not support the OpenCL standard. We consider targeting new programming models
as challenging for Lift, as its formal low-level representation is inherently designed for OpenCL
[Steuwer et al., 2017]; targeting further programming models with Lift would require the design and
implementation of new low-level representations, which we do not consider as straightforward.

To allow easily targeting new programming models with our approach, we have designed our
formalism as generic in the target model: our low-level representation (Figure 15) and optimization
space (Table 1) are designed and optimized toward an abstract system model (Definition 10) which
is capable of representing the device models of important programming approaches, including
OpenMP, CUDA, and OpenCL (Example 11). Furthermore, we have designed our high- and low-
level representations as minimalistic (Figures 6 and 15), e.g., by relying on three higher-order
functions only for expressing programs at the high abstraction level, which simplifies and reduces
the development effort for implementing code generators for programming models.

In addition, we believe that compared to our approach, the following basic design decisions
of Lift (and similar functional approaches) complicate the process of code generation for them
and increase the development effort for implementing code generators: (1) relying on a vast set
of small patterns for expressing computations, rather than aiming at a minimalistic design as we
do (as also discussed in Section 5.3); (2) relying on complex function nestings and compositions
for expressing computations, rather than avoiding nesting and relying on a fixed composition
structure of functions, as in our approach (Figure 5); (3) requiring new patterns for targeting new
classes of data-parallel computations (such as patterns slide and pad for stencils [Hagedorn et al.,
2018]), which have to be non-trivially integrated into Lift’s type and optimization system (often via
extensions of the systems [Hagedorn et al., 2018, Remmelg et al., 2016]), instead of relying on a fixed
set of expressive patterns (Figure 6) and generalized optimizations (Table 1) that work for various
kinds of data-parallel computations (Figure 14); (4) expressing high-level and low-level concepts in
the same language, instead of separating high-level and low-level concepts for a more structured
and thus simpler code generation process (Figure 4). We consider these four design decisions as
disadvantageous for code generation, because they require from a code generator handling various
kinds of patterns (decision 1), and the patterns need to be translated to significantly different code
variants, depending on their nesting level and composition order (decision 2). Moreover, each
extension of patterns (decision 3) might affect code generation also for the already supported
patterns, because the existing patterns need to be combined with the new ones via composition
and nesting (decision 2). We consider mixing up high-level and low-level concepts in the same
language (decision 4) as further complicating the code generation process, because code generators
cannot be implemented in clear, distinct stages: high-level language→low-level language→executable
program code.

Productivity. Functional approaches are expressive frameworks—to the best of our knowledge,
the majority of these approaches should also be able to express (possibly after some extension)
many of the high-level programs that can also be expressed via our high-level representation (e.g.,
those presented in Figure 14).

Amain differencewe see between the high-level representations of existing functional approaches
and the representation introduced by our approach is that the existing approaches rely on a vast
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set of higher-order functions for expressing computations; these functions have to be functionally
composed and nested in complex ways for expressing computations. For example, expressing matrix
multiplication in Lift requires also involving Lift’s pattern transpose (also when operating on
non-transposed input matrices) [Remmelg et al., 2016], as per design in Lift, multi-dimensional data
is considered as an array of arrays (rather than a MDA, as in our approach as well as polyhedral
approaches). In contrast, we aim to keep our high-level language minimalistic, by expressing data-
parallel computations using exactly three higher-order functions and which are always used in the
same, fixed order (shown in Figure 5). Rasch et al. [2020b, c] confirm that due to the minimalistic
and structured design of our high-level representation, programs in our representation can even be
systematically generated from straightforward, sequential program code.

Functional approaches also tend to require extension when targeting new application areas,
which hinders the expressivity of the frameworks and thus also their productivity. For example,
functional approach Lift [Steuwer et al., 2015] required notable extension for targeting, e.g., matrix
multiplications (so-called macro-rules had to be added to Lift [Remmelg et al., 2016]) and stencil
computations (primitives slide and pad were added, and Lift’s tiling optimization had to be
extended toward overlapped tiling [Hagedorn et al., 2018]). In contrast, we have formally defined
our class of targeted computations (as MDH functions, Definition 3), and the generality of our
approach allows expressing matrix multiplications and stencils out of the box, without relying on
domain-specific building blocks.

6.4 Domain-Specific Approaches
Many approaches focus on code generation and optimization for particular domains. A popular
domain-specific approach is ATLAS [Whaley and Dongarra, 1998] for linear algebra routines on
CPUs.26 Similar to ATLAS, approach FFTW [Frigo and Johnson, 1998] targets Fast Fourier Transform,
and SPIRAL [Puschel et al., 2005] works for Digital Signal Processing.

Nowadays, the best performing, state-of-practice domain-specific approaches are often provided
by vendors and specifically designed and optimized toward their target application domain and
also architecture. For example, the popular vendor library NVIDIA cuBLAS [NVIDIA, 2022b] is
optimized by hand, on the assembly level, toward computing linear algebra routines on NVIDIA
GPUs—cuBLAS is considered in the community as gold standard for computing linear algebra
routines on GPUs. Similarly, Intel’s oneMKL library [Intel, 2022c] computes with high performance
linear algebra routines on Intel CPUs, and libraries NVIDIA cuDNN [NVIDIA, 2022e] and Intel
oneDNN [Intel, 2022b] work well for convolution computations on either NVIDIA GPU (cuDNN)
or Intel CPU (oneDNN), respectively.

In the following, we discuss domain-specific approaches in terms of performance, portability, and
productivity.

Performance. Domain-specific approaches, such as cuBLAS and cuDNN, usually achieve high
performance. This is because the approaches are hand-optimized by performance experts—on
the assembly level—to exploit the full performance potential of their target architecture. In our
experiments (Section 5), we show that our approach often achieves competitive and sometimes
even better performance than domain-specific approaches provided by NVIDIA and Intel, which is
mainly caused by their portability issues across different data characteristics, as we discuss in the
next paragraph.

26Previous work [Rasch et al., 2021] shows that MDH (already in its original, proof-of-concept implementation) achieves
higher performance than ATLAS.
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Portability. Domain-specific approaches usually struggle with achieving portability across differ-
ent architectures. This is because the approaches are often implemented in architecture-specific
assembly code to achieve high performance, but thereby also being limited to their target ar-
chitecture. The domain-specific approaches often also struggle with achieving portability of per-
formance across different data characteristics (e.g., their sizes): the approaches usually rely on
a set of pre-implemented implementations that are each designed and optimized toward aver-
age high performance across a range of data characteristic. In contrast, our approach (as well
as many scheduling and polyhedral approaches) allow automatically optimizing (auto-tuning)
computations for particular data characteristics, which is important for achieving high performance
[Tillet and Cox, 2017]. Thereby, our approach often outperforms domain-specific approaches (as
confirmed in Section 5), particularly for advanced data characteristics (small, uneven, irregularly
shaped, . . . ), e.g., as used in deep learning.The costly time for auto-tuning is well amortized in many
application areas, because the auto-tuned implementations are re-used in many program runs. Fur-
thermore, auto-tuning avoids the time-intensive and costly process of hand-optimization by human
experts.

Productivity. Domain-specific approaches usually achieve highest productivity for their tar-
get domain (e.g., linear algebra), by providing easy to use high-level abstractions. However, the
approaches suffer from significant expressivity issues, because—per design—they are inherently
restricted to their target application domain only. Also, the approaches are often inherently bound
to only particular architectures, e.g., only GPU (as NVIDIA cuBLAS and cuDNN) or only CPU
(as Intel oneMKL and oneDNN). Domain-specific vendor libraries, such as NVIDIA cuBLAS and
Intel oneMKL, also tend to offer the user differently performing variants of computations; the
variants have to be naively tested by the user when striving for the full performance potentials of
approaches (as discussed in Section 5.4), which is cumbersome for the user.

6.5 Higher-Level Approaches
There is a broad range of existing work that is focused on higher-level optimizations than proposed
by this work. We consider such higher-level approaches as greatly combinable with our approach.
For example, the polyhedral approach is capable of expressing algorithmic-level optimizations, like
loop skewing [Wolf and Lam, 1991], to make programs parallelizable; such optimizations are beyond
the scope of this work, but they can be combined with our approach as demonstrated by Rasch et al.
[2020b,c]. Similarly, we consider the approaches introduced by Farzan and Nicolet [2019], Frigo et al.
[1999], Gunnels et al. [2001], Yang et al. [2021], which also focus on algorithmic-level optimizations,
as greatly combinable with our approach: algorithmically optimizing user code according to the
approaches’ techniques, and using our methodologies to eventually map the optimized code to
executable program code for parallel architectures.

Futhark [Henriksen et al., 2017], Dex [Paszke et al., 2021], and ATL [Liu et al., 2022] are further
approaches focused on high-level program transformations, like advanced flattening mechanisms
[Henriksen et al., 2019], thereby optimizing programs at the algorithmic level of abstraction. We
consider using our work as backend for these approaches as promising: the three approaches often
struggle with mapping their algorithmically optimized program variants eventually to the multi-
layered memory and core hierarchies of state-of-the-art parallel architectures, which is exactly the
focus of this work.

6.6 Existing Work on MDH
Our work is inspired by the algebraic formalism of MDHs which is introduced in the work-in-
progress paper [Rasch and Gorlatch, 2016]. The MDH approach, as presented in the previous work,
relies on a semi-formal foundation and focuses on code generation for the OpenCL programming
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model only [Rasch et al., 2019a]. This work makes major contributions over the existing work on
MDHs and its OpenCL code generation approach.

We introduce a full formalization of MDH’s high-level program representation. In our new
formalism, we rely on expressive typing: for example, we encode MDHs’ data sizes into our type
system, e.g., by introducing index sets for MDAs (Definition 1), and we respect and maintain these
sets thoroughly during MDH computations. Our expressive typing significantly contributes to
correct and simplified code generation, as all relevant type and data size information are contained
in our formal, low-level program representation (Figure 15) from which we eventually generate
executable program code (Section 3). In contrast, the existing MDH work considers MDAs of
arbitrary sizes and dimensionalities to be all of the same, straightforward type, which has greatly
simplified the design of the proof-of-concept MDH formalism introduced by Rasch and Gorlatch
[2016] (in particular, the definition and usage of combine operators), but at the cost of significantly
harder and error-prone code generation: all the missing, type-relevant information need to be
elaborated by the implementer of the code generator in the existing MDH work, e.g., allocation
sizes of fast memory resources used for caching input data or for storing computed intermediate
results. Furthermore, while the original MDH work [Rasch and Gorlatch, 2016] is focused on
introducing higher-order function md_hom only, this work particularly also introduces higher order
functions inp_view and out_view (Section 2.3) which express input and output views in a formally
structured and concise manner, and which are central building blocks in our new approach for
expressing computations (Figure 14). Also, by introducing and exploiting the index set concept
for MDAs, we have improved the definition of the concatenation operator ++ (Example 1) toward
commutativity, which is required for important optimizations. e.g., loop permutations (expressed
via Parameters D1, S1, R1 in Table 1).

A further substantial improvement is the introduction of our low-level representation (Section 3).
It relies on a novel combination of tuning parameters (Table 1) that enhance, generalize, and extend
the existing, proof-of-concept MDH parameters which capture a subset of OpenCL-orientated
features only [Rasch et al., 2019a]. Moreover, while the existing MDHwork introduces formally only
parameters for flexibly choosing numbers of threads [Rasch and Gorlatch, 2016] (which corresponds
to a very limited variant of our tuning parameter 0 in Table 1, because our parameter 0 also choses
numbers of memory tiles and is not restricted to OpenCL), the other OpenCL parameters are
introduced and discussed by Rasch et al. [2019a] only informally, from a technical perspective.
With our novel parameter set, we are able to target various kinds of programming models (e.g., also
CUDA, as in Section 5) and also to express important optimizations that are beyond the existing
work on MDH, e.g., optimizing the memory access pattern of computations: for example, we
achieve speedups > 2× over existing MDH for the deep learning computations discussed in Section
5. Our new tuning parameters are expressive enough to represent state-of-the-art, data-parallel
implementations, e.g., as generated by scheduling and polyhedral approaches (shown by Rasch
[2024], Figures 20–23), and our experiments in Section 5 confirm that auto-tuning our parameters
enables performance beyond the state of the art, including hand-optimized solutions provided by
vendors, which is not possible when using the existing MDH approach. The expressivity of our
parameters particularly also enables comparing significantly differently optimized implementations,
based on the values of formally specified tuning parameters, which we consider as promising for
structured performance analysis in future work. Moreover, our new low-level representation targets
architectures that may have arbitrarily deep memory and core hierarchies, by having optimized
our representation toward an abstract system model (Definition 10); in contrast, the existing MDH
work is focused on OpenCL-compatible architectures only.
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Our experimental evaluation extends the previous MDH experiments by comparing also to
the popular state-of-practice approach TVM which is attracting increasing attention from both
academia [Apache Software Foundation, 2021] and industry [OctoML, 2022]. Also, we compare
to the popular polyhedral compilers PPCG and Pluto, as well as the currently newest versions of
hand-optimized, high-performance libraries provided by vendors. Furthermore, we have included
a real-world case study in our experiments, considering the most time-intensive computations
within the three popular deep learning neural networks ResNet-50, VGG-16, and MobileNet; the
study also includes Capsule-style convolution computations, which are considered challenging to
optimize [Barham and Isard, 2019]. Moreover, Table 14 analyses MDH’s expressivity using new
examples: it shows that MDH—based on the new contributions of this work (e.g., view functions)—is
capable of expressing computations bMatMuL, MCC_Capsule, Histo, scan, and MBBS, which have
not been expressed via MDH in previous work. Our experiments confirm that we achieve high
performance for bMatMuL and MCC_Capsule on GPUs and CPUs, and our future work aims to
thoroughly analyze our approach for computations Histo, scan, and MBBS in terms of performance,
portability, and productivity.

7 Conclusion
We introduce a formal (de/re)-composition approach for data-parallel computations targeting state-
of-the-art parallel architectures. Our approach aims to combine three major advantages over related
approaches—performance, portability, and productivity—by introducing formal program represen-
tations on both (1) high level, for conveniently expressing—in one uniform formalism—various kinds
of data-parallel computations (including linear algebra routines, stencil computations, data mining
algorithms, and quantum chemistry computations), agnostic from hardware and optimization de-
tails, while still capturing all information relevant for generating high-performance program code;
(2) low level, which allows uniformly reasoning—in the same formalism—about optimized (de/re)-
compositions of data-parallel computations targeting different kinds of parallel architectures (GPUs,
CPUs, etc.). We lower our high-level representation to our low-level representation, in a formally
sound manner, by introducing a generic search space that is based on performance-critical parame-
ters. The parameters of our lowering process enable fully automatically optimizing (auto-tuning)
our low-level representations for a particular target architecture and characteristics of the input
and output data, and our low-level representation is designed such that it can be straightforwardly
transformed to executable program code in imperative-style programming languages (including
OpenMP, CUDA, and OpenCL). Our experiments confirm that due to the design and structure of our
generic search space in combination with auto-tuning, our approach achieves higher performance
on GPUs and CPUs than popular state-of-practice approaches, including hand-optimized libraries
provided by vendors.

8 Future Work
We consider this work as a promising starting point for future directions. A major future goal is
to extend our approach toward expressing and optimizing simultaneously multiple data-parallel
computations (e.g., matrix multiplication followed by convolution), rather than optimizing compu-
tations individually and thus independently from each other (e.g., only matrix multiplication or only
convolution). Such extension enables optimizations, such as kernel fusion, which is important for
the overall application performance and considered challenging [Fukuhara and Takimoto, 2022; Li
et al., 2022; Wahib and Maruyama, 2014]. We see this work as a promising foundation for our future
goal, because it enables expressing and reasoning about different computations in the same formal
framework. Targeting computations on sparse input/output data formats, inspired by Ben-Nun
et al. [2017], Hall [2020], Kjolstad et al. [2017], Pizzuti et al. [2020], is a further major goal, which
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requires extending our approach toward irregularly-shaped input and output data, similarly as
done by Pizzuti et al. [2020]. Regarding our optimization process, we aim to introduce an analytical
cost model for computations expressed in our formalism—based on operational semantics—thereby
accelerating (or even avoiding) the auto-tuning overhead, similarly as done by Li et al. [2021],
Muller and Hoffmann [2021]. Moreover, we aim to incorporate methods from machine learning
into our optimization process [Leather et al., 2014, Merouani et al., 2024], instead of relying on
empirical auto-tuning methods only. To make our work better accessible for the community, we
aim to implement our approach into MLIR [Lattner et al., 2021] which offers a reusable compiler
infrastructure. The contributions of this work give a precise, formal recipe of how to implement our
introduced methods into approaches such as MLIR. Moreover, relying on the MLIR framework will
contribute to a structured code generation process in assembly-level programming models, such as
LLVM [Lattner and Adve, 2004] and NVIDIA PTX [NVIDIA, 2022i]. We consider targeting assembly
languages as important for our future work: assembly code offers further, low-level optimization
opportunities [Goto and Geijn, 2008, Lai and Seznec, 2013], thereby enabling our approach to
potentially achieve higher performance than reported in Section 5 for our generated CUDA and
OpenCL code. Also, we aim to extend our approach toward distributed multi-device systems that
are heterogeneous, inspired by dynamic load balancing approaches [Chen et al., 2010] and advanced
data distributions techniques [Yadav et al., 2022]. Targeting domain-specific hardware extensions,
such as NVIDIA Tensor Cores [NVIDIA, 2017] is also an important goal for our future work, as such
extensions allow significantly accelerating computations for the target of the extensions (e.g., deep
learning [Markidis et al., 2018]). Finally, we aim to support more target backends (additionally to
OpenMP, CUDA, and OpenCL), e.g., AMD’s HIP [AMD, 2024] which is efficient for programming
AMD GPUs. Similarly, we consider Triton [Tillet et al., 2019], AMOS [Zheng et al., 2022], and
Graphene [Hagedorn et al., 2023] as further, promising backends for our approach.
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