ATF: A Generic Auto-Tuning Framework

Ari Rasch
University of Miunster, Germany
arasch@wwu.de

ABSTRACT

We describe the Auto-Tuning Framework (ATF) - a simple-to-use,
generic framework for automatic program optimization by choosing
the most suitable values of program parameters, such as number of
parallel threads, tile sizes, etc. ATF combines four major advantages
over the state-of-the-art auto-tuners: i) it is generic regarding the
programming language, application domain, tuning objective, and
search technique; ii) it can auto-tune a broader class of applications
by allowing tuning parameters to be interdependent, e.g., when a
parameter is divisible by another parameter; iii) it allows tuning
parameters to have substantially larger ranges by implementing an
optimized search space generation process; and iv) it is arguably
simpler to use: the ATF user prepares an application for auto-tuning
by annotating its source code with simple tuning directives. Our
experimental results demonstrate that ATF shows significantly
better tuning results as compared to the state-of-the-art auto-tuners
OpenTuner and CLTune.

ACM Reference format:

Ari Rasch and Sergei Gorlatch. 2018. ATF: A Generic Auto-Tuning Frame-
work. In Proceedings of HPDC °18: The 27th International Symposium on
High-Performance Parallel and Distributed Computing, Tempe, AZ, USA, June
11-15, 2018 (HPDC ’18), 2 pages.

https://doi.org/10.1145/3220192.3220194

1 MOTIVATION AND RELATED WORK

Auto-tuning is an approach to automatically find optimal values
of tuning parameters, e.g., the number of parallel threads. To auto-
tune a program, the programmer has to identify program’s tuning
parameters and perform the following three steps: 1) generate the
application-specific search space, 2) implement a cost function for
estimating program’s cost, e.g., its runtime or energy consumption,
and 3) explore the search space by using an automatized search
technique. Auto-tuning systems have been successfully applied
in different application areas, e.g., ATLAS [8] for linear algebra
routines and PATUS [5] for stencil computations. The common
weakness of these approaches is that they are not generic, i.e., they
cannot be used for applications from other domains.

OpenTuner [4] and CLTune [3] are recent state-of-the-art auto-
tuning approaches that are generic regarding the application do-
main: given the specification of the tuning parameters (i.e., their
names and the ranges of possible values), OpenTuner and CLTune

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HPDC ’18, June 11-15, 2018, Tempe, AZ, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5899-6/18/06....$15.00
https://doi.org/10.1145/3220192.3220194

Sergei Gorlatch
University of Miunster, Germany
gorlatch@wwu.de

automatically generate a search space and explore it by using pre-
implemented search techniques. However, OpenTuner does not
provide mechanisms for expressing interdependencies between tun-
ing parameters (e.g., some parameter must be divisible by another
parameter). CLTune allows interdependencies but is applicable only
for parameters with small ranges due to its time-intensive process
of search space generation. Moreover, CLTune is restricted to auto-
tuning only OpenCL and only in terms of runtime performance.
Furthermore, both approaches — OpenTuner and CLTune - require
from the user specific programming skills for auto-tuning, e.g., in
Python (OpenTuner) or in C++ (CLTune), making auto-tuning hard
for common application developers.

We propose the Auto-Tuning Framework (ATF) which combines
the following advantages over the state-of-the-art auto-tuners:

i) ATF allows auto-tuning programs written in arbitrary pro-
gramming languages and of arbitrary application domains,
using a user-defined tuning objective and search technique;

ii) ATF allows interdependencies between tuning parameters
by introducing parameter constraints;
iii) ATF allows substantially larger parameter ranges by opti-
mizing the process of search space generation;
iv) ATF is arguably simpler to use: the user annotates program’s
source code with simple tuning directives, rather than having
to implement an auto-tuning program, e.g., in Python or C++.

2 ILLUSTRATION OF ATF

We illustrate the usage of ATF by a simple example: auto-tuning the
OpenCL saxpy kernel of the popular CLBlast library [2]. The kernel
has two integer tuning parameters: the work per thread (WPT) and
the OpenCL local size (LS), which are interdependent: LS has to
divide N/WPT, where N is the input size (line 1).

Listing 1 demonstrates how ATF is used for auto-tuning the
saxpy kernel. The user annotates the kernel’s source code (line 25)
with ATF tuning directives (line 1-23): they specify 1) the tuning
parameters (line 3-9) - interdependencies are expressed via param-
eter constraints (line 9), 2) the OpenCL cost function (line 11-17),
e.g., by setting the device to use (line 11-12) and the kernel’s input
arguments (line 14-17), and 3) the search space exploration process,
i.e., the search technique (line 22), e.g., exhaustive search or simu-
lated annealing, and the abort condition which defines when to stop
the tuning (line 23). The annotated source code is passed to ATF
which yields as its result the best found configuration in terms of
high runtime performance. To auto-tune for a tuning objective that
is different from runtime performance, the auto-tuned program has
to write its corresponding cost (e.g., its energy consumption) after
each run to a cost file which is then read by ATF.

https://doi.org/10.1145/3220192.3220194
https://doi.org/10.1145/3220192.3220194

HPDC ’18, June 11-15, 2018, Tempe, AZ, USA

#atf::var::N $1

1
2

3 #atf::tp name "WPT"

4 range interval<size_t>(1,N)
5 constraint divides(N)

6

7 #atf::tp name "Ls"

8 range interval<size_t>(1,N)
9 constraint divides(N/WPT)

11 #atf::ocl::platform "NVIDIA"
12 #atf::ocl::device "Tesla K20"

14 #atf::ocl::input scalar<int>(N) // N
15 #atf::ocl::input scalar<float>() // a
16 #atf::ocl::input buffer<float>(N) // x
17 #atf::ocl::input buffer<float>(N) // vy

19 #atf::ocl::global_size N/WPT
20 #atf::ocl::local_size LS

22 #atf::search_technique annealing
23 #atf::abort_conition duration<minutes>(10)

25 // SAXPY kernel's OpenCL code

Listing 1: ATF tuning directives for saxpy in OpenCL.

3 EXPERIMENTAL RESULTS

ATF provides significantly better tuning results as compared to
CLTune and OpenTuner for the important routine GEMM (General
Matrix Multiplication) [6] as implemented in the state-of-the-art
auto-tunable CLBlast [2] library. For evaluation, we use a dual-
socket system equipped with two Intel Xeon E5-2640 CPUs, as well
as an NVIDIA Tesla K20m GPU.

Figure 2 shows the measured speedup of the GEMM routine auto-
tuned by ATF as compared to the routine auto-tuned by CLTune
and OpenTuner on four different input sizes that are heavily used
in the deep-learning framework Caffe [9]. We employ the CLTune
program that CLBlast uses for auto-tuning GEMM [2], and we
implement the OpenTuner program for this kernel according to [7]
where we use the unconstrained search space and set an ERROR
state in case of an invalid configuration.

We observe that in comparison to CLTune, ATF improves GEMM’s
runtime by factors from 1.66X to 17.60x on the CPU (upper part
of the figure, logarithmic scale), and from 1.33X to 3.62X on the
GPU (lower part of the figure). The reason is that CLBlast artifi-
cially limits CLTune’s tuning parameter ranges, apparently because
of CLTune’s time-intensive process of search space generation,
thereby missing optimal solutions.

Compared to OpenTuner, ATF speedups the GEMM routine by
factors from 1.98x to 5.31x on the CPU (top), and by factors from
1.20X to 1.65% on the GPU (bottom). This is because OpenTuner
uses unconstrained search spaces and, thus, cannot find a valid con-
figuration since they make only a tiny fraction of CLBlast GEMM’s
search space: e.g., for the four input sizes in Figure 2, valid configu-
rations comprise < 0,001% of the unconstrained search space.

4 CONCLUSION

We present ATF — a highly generic framework for program auto-
tuning that has several advantages as compared to the state-of-the-
art approaches. ATF can auto-tune programs written in an arbitrary
programming languages and belonging to an arbitrary application

Ari Rasch and Sergei Gorlatch

OATF vs. CLTune OATF vs. OpenTuner
17.60
16.00

2 800
=] 5.31
5 4.03 3.96
2 _ " 3.49
g 4.00
2 2.31
& 1.98
2.00 1.66
1.00
(20,576,1) (20,576,25) (50,64,1) (50,64,500)
OATF vs. CLTune OJATF vs. OpenTuner
4.0
3.62

3.5
2
&30 2.77
c
o
2 25
S
T
]
2 2.0
@ 165 156

1.36
15 121 1895
1.0
(20,576,1) (20,576,25) (50,64,1) (50,64,500)

Fig. 2: Speedup (higher is better) of CLBlast’s GEMM rou-
tine [2] auto-tuned by ATF over auto-tuning by CLTune and
OpenTuner on Intel CPU (top) and NVIDIA GPU (bottom),
using different input sizes (M, N, K) for M X K and K X N in-
put matrices.

domain; tuning parameters are allowed to be interdependent. The
user can auto-tune for an arbitrary objective (e.g., high runtime
performance and/or low energy consumption) and choose among
pre-implemented search techniques. We demonstrate that ATF is
easy to use: the ATF user annotates the source code with simple
tuning directives, rather than implements a tuning program, e.g., in
Python or C++ — which makes auto-tuning appealing to common
application developers. Our experimental results show that ATF
provides significantly better tuning results — speedups of up to
17x — than the state-of-the-art approaches CLTune and OpenTuner
for General Matrix Multiplication (GEMM) written in OpenCL on
important input sizes as used in deep learning.
A detailed explanation of ATF is provided in [1].

REFERENCES

[1] A.Rasch, and S. Gorlatch. 2018. ATF: A Generic, Directive-Based Auto-Tuning
Framework. Concurrency and Computation: Practice and Experience (2018), 0-15.

[2] C. Nugteren. 2017. CLBlast: A Tuned OpenCL BLAS Library. arXiv preprint
arXiv:1705.05249 (2017), 0-7.

[3] C.Nugteren et al. 2015. CLTune: A Generic Auto-Tuner for OpenCL Kernels. In
Embedded Multicore/Many-core Systems-on-Chip (MCSoC). IEEE, 195-202.

[4] J. Ansel et al. 2014. OpenTuner: An Extensible Framework for Program Autotun-
ing. In Int. Conf. on Parallel Architectures and Compilation. ACM, 303-316.

[5] M. Christen et al. 2011. PATUS: A Code Generation and Autotuning Framework

For Parallel Iterative Stencil Computations on Modern Microarchitectures. In

Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE International.

IEEE, 676-687.

Netlib. 2017. BLAS. (2017). netlib.org/blas/

OpenTuner. 2018. Interdependent Tuning Parameters (Issue 106). https://github.

com/jansel/opentuner/issues/106. (2018).

[8] R. Whaley et al. 1998. Automatically Tuned Linear Algebra Software. In Proc. of
the 1998 ACM/IEEE Conf. on Supercomputing. 1-27.

[9] Y. Jia et al. 2014. Caffe: Convolutional Architecture for Fast Feature Embedding.
In Proceedings of the 22nd ACM international conference on Multimedia. ACM,
675-678.

l6
[7

netlib.org/blas/
https://github.com/jansel/opentuner/issues/106
https://github.com/jansel/opentuner/issues/106

	Abstract
	1 Motivation and Related Work
	2 Illustration of ATF
	3 Experimental Results
	4 Conclusion
	References

