
Developing High-Performance, Portable OpenCL Code via
Multi-Dimensional Homomorphisms

Ari Rasch
a.rasch@wwu.de

University of Muenster
Muenster, Germany

Richard Schulze
r.schulze@wwu.de

University of Muenster
Muenster, Germany

Sergei Gorlatch
gorlatch@wwu.de

University of Muenster
Muenster, Germany

CCS CONCEPTS
• Computing methodologies→ Parallel computing method-
ologies; • Computer systems organization → Parallel archi-
tectures.

KEYWORDS
OpenCL, Performance-Portability, Multi-Dimensional Homomor-
phisms, Auto-Tuning, GPU, multi-core CPU, BLAS, Stencil
ACM Reference Format:
Ari Rasch, Richard Schulze, and Sergei Gorlatch. 2019. Developing High-
Performance, Portable OpenCL Code via Multi-Dimensional Homomor-
phisms. In International Workshop on OpenCL (IWOCL’19), May 13–15, 2019,
Boston, MA, USA. ACM, New York, NY, USA, 1 page. https://doi.org/10.1145/
3318170.3318171

1 ABSTRACT
A key challenge in programming high-performance applications
is achieving portable performance, such that the same program
code can reach a consistent level of performance over the variety of
modern parallel processors, including multi-core CPU and many-
core Graphics Processing Units (GPU), and over the variety of
problem sizes.

Popular approaches to parallel programming are either restricted
to the hardware of a particular vendor (like CUDA for NVIDIA) or,
even if they provide code portability (like OpenCL), performance
portability is usually not available: for example, a parallel program
achieving high performance on a GPU often yields poor perfor-
mance on a CPU, or even on another GPU model. The reason is that
hardware architectures differ significantly in their characteristics,
e.g., GPU provide a high number of cores but small caches while
CPU have a low number of cores and big caches; also GPU from dif-
ferent vendors (e.g., NVIDIA vs. AMD) pose different or even contra-
dicting requirements on the code for achieving the full performance
potential of the corresponding architecture. Performance differs
also across input sizes. For example, a high-performance implemen-
tation of GEneral Matrix-Matrix Multiplication (GEMM) targeting
big input matrices differs significantly from a GEMM implemen-
tation optimized for small matrices, e.g., as used in deep learning.
This is because high performance on big matrices is achieved by

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IWOCL’19, May 13–15, 2019, Boston, MA, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6230-6/19/05.
https://doi.org/10.1145/3318170.3318171

computing all elements of the resulting matrix simultaneously and
each of them sequentially, whereas for high performance on small
matrices, the computation of each element should be parallelized
as well.

The lack of performance portability often requires re-designing
program code for every new target architecture and/or another
problem size.

In this talk, we address an approach to performance portabil-
ity based on patterns of parallelism and auto-tuning. We extend
the functional formalism of Multi-Dimensional Homomorphisms
(MDH) that allows expressing a wide range of applications (includ-
ing the popular BLAS routines and stencil computations) as MDH-
instances. For MDH, we develop a generic OpenCL implementation
schema. This schema is performance-portable: it is parametrized
with the performance-critical parameters of OpenCL’s platform
and memory model, such that, for each particular MDH-instance,
particular problem size and particular target architecture, we can
fully automatically find the well-performing parameter values us-
ing our novel Auto-Tuning Framework (ATF), and thereby adapt
the OpenCL code correspondingly.

Our experiments with linear algebra routines (BLAS) and sten-
cil applications demonstrate that we reach competitive and often
even significantly better performance than the related work – e.g.,
speedup factors of up to 5x over the hand-implemented, vendor-
provided BLAS libraries Intel MKL and NVIDIA cuBLAS – on rep-
resentative parallel architectures and for important input sizes that
are used in deep learning.

https://doi.org/10.1145/3318170.3318171
https://doi.org/10.1145/3318170.3318171
https://doi.org/10.1145/3318170.3318171

	1 Extended Abstract

