Portable Parallel Performance
via Multi-Dimensional Homomorphisms

Ari Rasch
University of Minster, Germany
arasch@wwu.de

ACM Reference format:

Ari Rasch, Richard Schulze, and Sergei Gorlatch. 2018. Portable Parallel
Performance via Multi-Dimensional Homomorphisms. In Proceedings of
Supercomputing, Dallas, Texas USA, November 2018 (SC’18), 3 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 MOTIVATION AND RELATED WORK

Achieving portable program performance on modern architectures,
e.g., multi-core CPU and Graphics Processing Unit (GPU) is hard:
while approaches such as OpenCL [7] provide portability of pro-
gram code across a range of hardware architectures, they do not
guarantee portability of performance, e.g., a parallel program yield-
ing high performance on a multi-core CPU can yield poor perfor-
mance on a GPU and vice versa. This is because different hardware
architectures usually differ significantly in their characteristics,
e.g., GPUs provide a high number of cores but small caches while
multi-core CPUs have a low number of cores and big caches.

Performance differs also across input sizes [17]. For example, a
high-performance implementation of GEneral Matrix-Matrix Multi-
plication (GEMM) targeting big square input matrices — the usual
input of numerical applications [8] — differs significantly from a
GEMM implementation optimized for small matrices, e.g., as used
in the important application area of deep learning [18]. This is
because high performance on big square input matrices is achieved
by computing each element of the result matrix in parallel [6]; how-
ever, for high performance on small matrix sizes, the computation
of each result element itself has to be parallelized as well [17] to
increase the degree of parallelism and consequently to better utilize
modern parallel hardware with many cores.

Several state-of-the-art approaches aim at providing portability
of performance. However, they are mostly limited to restricted com-
binations of: 1) applications, 2) hardware architectures, and/or 3) in-
put sizes. For example, the popular libraries NVIDIA cuBLAS [13]
and Intel MKL [5] provide high performance for linear algebra
routines on NVIDIA GPUs or Intel multi-core CPUs, respectively.
However, these libraries cannot be used for application classes that
are different from linear algebra and for hardware architectures
that are not NVIDIA GPU or Intel CPU, e.g., AMD CPU/GPU and
ARM mobile processors. In contrast, the CLBlast library [12] targets
linear algebra routines on various architectures, but it is only opti-
mized for large input sizes and usually provides lower performance

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SC’18, November 2018, Dallas, Texas USA

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-x-XxxXX-XXXX-X/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Richard Schulze

University of Minster, Germany
r.schulze@wwu.de

Sergei Gorlatch
University of Minster, Germany
gorlatch@wwu.de

than MKL und cuBLAS on Intel and NVIDIA hardware. Lift [11] is
a novel approach that targets various application classes, hardware
architectures and input sizes. For example, it has been recently
shown that Lift provides high portable performance for stencil ap-
plications on GPU architectures [3]. However, the Lift approach is
based on a vast search space of differently-optimized implementa-
tions, where search space’s efficient exploration requires artificial
search space pruning by a Lift expert for each combination of target
application, hardware architecture, and input sizes.

Multi-dimensional Homomorphisms (MDHs) [15] are a recently-
defined class of parallelizable functions; they cover application areas
such as linear algebra routines (BLAS) and stencil computations.
MDHs can be efficiently executed on modern parallel architectures
and on a broad range of input sizes. An OpenCL-implementation
schema for MDHss is presented in [15]; it addresses the performance-
portability issue by being generic in the performance-critical param-
eters of the OpenCL platform model — the number of work-items (the
OpenCL term for thread) and the number of work-groups (groups
of work-items). The generality of the schema enables automatically
choosing optimized values of these parameters for a target archi-
tecture and input size by exploiting the auto-tuning approach [14].
However, many MDHs (e.g., the popular GEMM routine [6]) rely on
fast data accesses for high performance, and thus, an efficient im-
plementation of MDHs has to efficiently utilize also the OpenCL’s
memory model.

In this paper, we fundamentally extend the MDHs’ OpenCL im-
plementation schema by making it generic also in the performance-
critical parameters of the OpenCL’s memory model: the local and
private memory sizes. This enables auto-tuning our novel schema
for the specific memory requirements of a target parallel device
(and not only for device’s thread hierarchy, as in [15]), thereby
significantly contributing to portability of performance. Our pre-
liminary results demonstrate for applications from linear algebra
(BLAS) and stencil computations that with our novel implemen-
tation schema, we reach competitive and often even significantly
better performance than the related work on modern architectures
and for important input sizes, e.g., as used in the arising application
area of deep learning.

2 MULTI-DIMENSIONAL HOMOMORPHISMS
AND THE MD_HOM PARALLEL PATTERN

Multi-dimensional homomorphisms [15] are defined as follows.
Let T and T’ be two arbitrary data types. e.g., float. A function
h:T[Ny]...[Ng] — T’ ond-dimensional arrays is called a multi-
dimensional homomorphism (MDH) iff there exist combine operators
®1,...,®g : T X T’ — T’, such that for each k € [1,d] and
arbitrary, concatenated input MDA a + b in dimension k:

W a+4b) = h(a) ®; h(b)

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SC’18, November 2018, Dallas, Texas USA

In words: the value of h on a concatenated array in dimension k
can be computed by applying h to the MDA’s chunks a and b and
combining the results afterwards by using the combine operator
®p. Since the computations of h(a) and h(b) are independent of
each other, they can be performed in parallel.

According to [15], every MDH h can be computed as

h(a[Ni]...[Ngl)= ®1 ... @®g f(alir]...[ig])

iIE[lle] idE[l,Nd]
where f represents the behavior of h on scalar values, i.e., f(a[0] ...
[0]) = h(a) for each d-dimensional array a comprising only one
element (i.e., a has size 1 in each of its d dimensions). This enables
expressing h also as:

h =md_hom(f, (®1,...,®4))

As md_hom represents a higher-order function that can be com-
puted in parallel, it represents a parallel pattern (a.k.a. algorithmic
skeleton [1, 2]).

3 THE OPENCL IMPLEMENTATION OF THE
MD_HOM PARALLEL PATTERN

We provide a high-performance portable OpenCL implementation
schema for the md_hom parallel pattern. In comparison to our ini-
tial schema in [15], our novel approach efficiently utilizes also the
OpenCL’s memory model (and not only its platform model). For this,
we develop our OpenCL implementation as parametrized in the
performance-critical parameters of both models. For the platform
model, we parametrize in the number of work-groups NUM_WG_i
and the number of work-items per work group NUM_WI_i, where
1 < i < d for an d-dimensional input MDA. In addition, we intro-
duce novel parameters for OpenCL’s memory model: the sizes of
the OpenCL local and private memory LM_SIZE_i and PM_SIZE_i.
The OpenCL local and private memory regions are fast but scarce
memory resources that, for high performance, have to be efficiently
utilized by the programmer as explicitly managed caches [6].

Our implementation schema is as follows. We split the input
MDA into d-dimensional chunks of size LM_SIZE_i in dimension i
(ak.a. LM-chunks), 1 < i < d, and we split each LM-chunk further
in chunks of size PM_SIZE_i (PM-chunks). We cache the LM-chunks
in local memory and the PM-chunks in private memory. For comput-
ing the chunks, we start NUM_WG_i work-groups each comprising
NUM_WI_i work-items. The work-groups process the LM-chunks
and the work-items process the PM-chunks, correspondingly.

We enable portability of performance by automatically choos-
ing optimized values of the performance-critical parameters for
each new target hardware architecture and input size using the
auto-tuning approach. As concrete auto-tuner, we use the Auto-
Tuning-Framework (ATF) [14] - it is well suited to complex parallel
applications that target modern hardware architectures with many
cores.

4 EXPERIMENTAL EVALUATION

We experimentally evaluate our approach to performance portabil-
ity using two important samples: 1) GEMM - the most prominent
BLAS routine, and 2) Gradient — a popular stencil application [16].

In Figure 1, we demonstrate the speedup of md_hom for GEMM
and Gradient - both expressed according to [15] — on Intel Xeon E5

Ari Rasch, Richard Schulze, and Sergei Gorlatch

CPU and NVIDIA Tesla V100 GPU over state-of-the-art approaches:
i) Intel MKL [5] and NVIDIA cuBLAS [13] for GEMM, and ii) the
prominent Lift approach [3] in case of Gradient. For each sam-
ple, we use i) a small input size taken from the application area of
deep learning, and ii) a large input size, e.g., as used in numerical
computation (in case of BLAS) or image processing (Stencil), corre-
spondingly. In case of GEMM, the small input matrices are of size
10 X 64 and 64 x 500 [18] and the large matrices are both of size
1024 X 1024 [8]. For Gradient, we use a small input image size of
224 % 224 [4] and a large image of size 4096 X 4096 [10].

3.79
4.00 367 . . 3.00
° 1 (|ntel) 257

3.00

NVIDIA.

1.44
N 1.09
D

2 (2
L E®

2.00

2.00

Speedup over
cuBLAS (BLAS) / Lift (Stencil)

1.00

Speedup over
MKL (BLAS) / Lift (Stencil)

0.87
0.00 7 =

- 0.00

N e
2 (°o (°o
"é\ 2 5((\ 2

7
% |

BLAS Stencil BLAS Stencil

Figure 1: Speedup of md_hom (higher is better) on Intel CPU
(left) and NVIDIA GPU (right) for the samples GEMM (BLAS)
and Gradient (Stencil) over state-of-the-art approaches Intel
MKL, NVIDIA cuBLAS (BLAS) and Lift (Stencil). We use in-
put sizes as used in deep learning (small), and numerical
computations and image processing (large).

We observe that md_hom provides competitive and often even
significantly better performance than the references. The reason is
that Intel MKL and NVIDIA cuBLAS are highly hand-optimized li-
braries, but only for large input sizes. The better performance of the
MKL and cuBLAS for large input sizes is because they perform opti-
mizations at the assembly level which cannot be implemented using
OpenCL [9] . In case of Gradient, the Lift’s search space is pruned
by the Lift experts with focus on GPU architectures [3], thereby
missing optimal solutions for multi-core CPUs. In contrast, md_hom
has a smaller search space for its tuning parameters NUM_WG_i,
NUM_WI_i, LM_SIZE_i, and PM_SIZE_i. This enables high perfor-
mance for both CPU and GPU, because we do not rely on artificial
search space pruning for its efficient exploration — we have an
average tuning time of < 15h — and thus, we do not miss optimal
solutions.

We compare our novel md_hom’s implementation schema also
with its initial schema in [15]: we obtain a speedup of up to 5.3
for GEMM on the CPU and 2.6 on the GPU; for Gradient, our
speedups are 2.0 (CPU) and 1.3 (GPU). This is because, in compari-
son to our novel schema, md_hom’s initial schema is not optimized
for OpenCL’s memory model which is crucial for achieving high
performance for GEMM and Gradient.

REFERENCES

(1]

[2

—

[3

[10

(11

[12]
[13
[14

[15]

[16

[17

(18]

Sergei Gorlatch. 1999. Extracting and Implementing List Homomorphisms in
Parallel Program Development. Science of Computer Programming, 27 pp.
Sergei Gorlatch and Murray Cole. 2011. Parallel Skeletons. Encyclopedia of
Parallel Computing, 1417-1422.

Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch, and
Christophe Dubach. 2018. High Performance Stencil Code Generation with
Lift. International Symposium on Code Generation and Optimization, 100-112.
Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J.
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level Accuracy With 50x
Fewer Parameters and <1IMB Model Size. CoRR, 13 pp.

Intel. 2018. MKL. (2018). https://software.intel.com/en-us/mkl

K. Matsumoto et al. 2012. Performance Tuning of Matrix Multiplication in OpenCL
on Different GPUs and CPUs. International Conference for High Performance
Computing, Networking, Storage and Analysis, 396-405.

Khronos. 2018. OpenCL. (2018). https://www.khronos.org/opencl/

Jens Kriiger and Riidiger Westermann. 2003. Linear Algebra Operators for GPU
Implementation of Numerical Algorithms. ACM Transactions on Graphics, 908~
916.

Junjie Lai and Andre Seznec. 2013. Performance Upper Bound Analysis and
Optimization of SGEMM on Fermi and Kepler GPUs. International Symposium
on Code Generation and Optimization, 1-10.

Thibaut Lutz, Christian Fensch, and Murray Cole. 2013. PARTANS: An Au-
totuning Framework for Stencil Computation on Multi-GPU Systems. ACM
Transactions on Architecture and Code Optimization (TACO), 59-82.

Michel Steuwer et al. 2015. Generating Performance Portable Code Using Rewrite
Rules: From High-level Functional Expressions to High-performance OpenCL
Code. International Conference on Functional Programming, 13 pp.

Cedric Nugteren. 2017. CLBlast: A Tuned OpenCL BLAS Library. CoRR, 8 pp.
NVIDIA. 2018. cuBLAS. (2018). https://developer.nvidia.com/cublas

Ari Rasch and Sergei Gorlatch. 2018. ATF: A Generic, Directive-Based Auto-
Tuning Framework. Concurrency and Computation: Practice and Experience, 13
pp. https://doi.org/10.1002/cpe.4423

Ari Rasch and Sergei Gorlatch. 2018. Multi-dimensional Homomorphisms and
Their Implementation in OpenCL. International Journal of Parallel Programming,
101-119.

Prashant Singh Rawat, Changwan Hong, Mahesh Ravishankar, Vinod Grover,
Louis-Noél Pouchet, and P. Sadayappan. 2016. Effective Resource Management
for Enhancing Performance of 2D and 3D Stencils on GPUs. Annual Workshop
on General Purpose Processing Using Graphics Processing Unit, 92-102.

Philippe Tillet and David Cox. 2017. Input-aware Auto-tuning of Compute-
bound HPC Kernels. International Conference for High Performance Computing,
Networking, Storage and Analysis, 12 pp.

Yangqing Jia et al. 2014. Caffe: Convolutional Architecture for Fast Feature
Embedding. arXiv preprint arXiv:1408.5093, 4 pp.

SC’18, November 2018, Dallas, Texas USA

https://software.intel.com/en-us/mkl
https://www.khronos.org/opencl/
https://developer.nvidia.com/cublas
https://doi.org/10.1002/cpe.4423

	1 Motivation and Related Work
	2 Multi-Dimensional Homomorphisms and the md_hom Parallel Pattern
	3 The OpenCL Implementation Of The md_hom Parallel Pattern
	4 Experimental Evaluation
	References

