Code Generation & Optimization for Deep-Learning
Computations on GPUs
via Multi-Dimensional Homomorphisms

Richard Schulze Ari Rasch Sergei Gorlatch
University of Muenster University of Muenster University of Muenster
Germany Germany Germany

r.schulze @uni-muenster.de

I. INTRODUCTION

Deep Learning (DL) is currently the most popular machine-
learning method in the area of artificial intelligence. DL
programs consist of multiple, data-parallel computations (like
linear algebra routines and tensor operations), making DL
programs time intensive.

We present our work-in-progress code generation and opti-
mization approach for DL computations based on the algebraic
formalism of Multi-Dimensional Homomorphisms (MDH) [1].
We show that popular DL computations can be expressed in
the MDH formalism, thereby enabling exploiting the already
existing MDH GPU code generation and optimization ap-
proach [2], [3] which has proven to achieve high performance
and was so far not been focused on DL. Furthermore, we
show that the MDH formalism is more expressive than the
state-of-the-art DL abstractions (e.g., as provided by Ten-
sorFlow [4]): for example, MDH can express multiple DL
computations (e.g., multiple element-wise computations) as a
single MDH expression, which enables MDH optimizations
(like tiling and parallelization) across the computations. Our
experiments confirm that our MDH-based approach achieves
better performance than the state of the art, including Apache
TVM [5], [6] and Facebook’s TC [7].

II. THE MDH FORMALISM

We demonstrate the existing MDH formalism by expressing
and discussing the example of matrix multiplication:

MatMyl<TEType I M, N, KEN> . _

out_view™ (C:(i,J,k) — (i,3)) o
md_hom™ " * (x, (441, ++2, +)) ©
inp_view™™ (A:(i,73,k) — (i,k) ,

B: (i,3,k) = (k,3))

Here, we first fuse the domain-specific input of MatMul —
two matrices A€T"*¥ and BET**M both of type T (e.g.,
T=float or T=double) — to a 3-dimensional array com-
prising pairs (A[i,k],B[k,j]) € T x T. For this, we use
pattern inp_view which the MDH formalism provides to

a.rasch@uni-muenster.de

gorlatch@uni-muenster.de

uniformly prepare a domain-specific input for md_hom. After
fusing MatMuls’s two input matrices, we apply MatMul’s
scalar function * (multiplication) to each pair within the array,
and we combine the obtained results in dimension 1 and 2 via
4+ and 4++5 (concatenation), and in dimension 3 via + (ad-
dition). Pattern out_view is trivial in this example, but could
potentially be used to store the result matrix as transposed (by
replacing ” (i, 3, k) +— (i, J)” with 7 (i, 3, k) —(3,1)")
or in a stride fashion (replacing ” (i, j, k)~ (i, j)” with
(i, 3,k)—=>(ixsl, jxs2)”, for strides s1,s2€ N), etc.

III. DL COMPUTATIONS EXPRESSED IN THE MDH
FORMALISM

Table I shows how popular DL computations are expressed
in the MDH formalism; the implementations are taken from
the TensorFlow implementation of the real-world BERT neural
network [8].

Fig. 1 shows for an illustrative example subgraph of BERT’s
computation graph that it can be expressed as a single MDH
expression, thereby enabling MDH optimizations [2], [3]
across the computation nodes (parallelization, tiling, etc).

IV. EXPERIMENTAL RESULTS

We present our preliminary experimental results on NVIDIA
V100 GPU for the example DL computations BiasAdd
Gradient (BiasAddGrad) and Batched Matrix Multiplica-
tion (BatchMatMul) [4], as well as for the BERT’s sub-
graph shown in Fig. 1. We confirm that our MDH-based
approach [2], [3] achieves better performance than the newest
versions of TensorFlow (TF) [4], TVM [5], [6], and TC [7]
on real-world data sizes taken from the BERT [8] network:

e BiasAddGrad: MDH’s speedup over TF is > 1.5x,
TVM is > 2.9x, and TC is > 1.7x;

e BatchMatMul: MDH’s speedup over TVM is > 1.1x,
and TC is > 1.9x (TF has no GPU impl. for
BatchMatMul);

o BERT’s subgraph (Fig. 1): MDH’s speedup over TF is
>4.9x, TVM is > 3.7x, and TC is > 1.7x.

TA

BLE I

POPULAR DL COMPUTATIONS EXPRESSED IN THE MDH FORMALISM (SOME META-PARAMETERS OMITTED VIA ELLIPSIS FOR BREVITY).

Operator | out_view™ | md_hom®-> | inp_view®

<> T P IBl:(i,3) = (i,3),
Mul OBl: (i,3) = (i,3) # o, (1, tH2) TB2: (i, 9) = (4,3

<> T P _ IBl:(i,3) — (i,3),
Sub OB1: (i,3) = (i,3) s (1, +2) TB2: (i, 3) = (4,3)
ExpandDims < PENT > T 0BT (i1,...,ip) = (..., daxis—1,0, iagiss-..) id , (+1,-.-.+D) IBl: (iy,...,ip) ~ (i1,...,1iD)
BiasAddGrad ""e !> OBl: (i,3) — (3) id , (+, +H2) IBl: (i,3) — (i,3)

<N,N| > . Lo oo IBl: (bl,b2,1i,3,k) — (bl,b2,1,k) ,

BatchMatMul OBl: (bl,b2,1i,3,k) — (bl,b2,1i,) * o, (1, g,) 1B2: (bl b2, 1, 3. K) > (b1, b2,k 3)

float32[16,384,1]

float32[16,1,384]

float32[16,384,1]

float32[16,1,384]

Mul<T=float32> Mul T float32
ExpandDims__ T float32_ axis_ 1
float32[16,384,384] sub 1 rhs T float32
Mul_lhs ml10000__ T float32
1.0 E: dDims<T=float32, is=1>) N X . . L . .
[1.0] [expandDims 0at32, axis=1>] inp view<float32,float32>(TBl: (il,i2,13,id4) - (i1,13,0) .
float32 float32[16,1,384,384] — I1B2: (il1,12,13,i4) - (il,0,1i4))
A& md_hom<16,1,384,384> (
[Sub<T=float32>] [-10000.0] (x1,%2) - ((1.0-(x1*x2))*-10000.0) |,
float32([16,1,384,384] float32) (4, 4, +4)
Mul<T=float32> out_view<float32>(OBl: (il,i2,1i3,1i4) - (il,12,1i3,14))
T
float32([16,1,384,384] float32[16,1,384,384]
Fig. 1. Expressing an example subgraph of the BERT neural network (left) as a single MDH expression (right).
V. FUTURE WORK [S] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen,
M. Cowan, L. Wang, Y. Hu, L. Ceze, C. Guestrin, and

We will significantly extend Table I, and we will describe in
detail our methodology to generating a single MDH expression
from DL subgraphs (here only briefly shown in Fig. 1 for a
simple, illustrative example). Moreover, we will extend our
experiments toward further architectures (multi-core CPUs,
etc) and neural networks.

REFERENCES

[1] A. Rasch and S. Gorlatch, “Multi-dimensional homomorphisms and
their implementation in opencl,” International Journal of Parallel
Programming, vol. 46, pp. pp. 101-119, 2018. [Online]. Available:
https://doi.org/10.1007/s10766-017-0508-z

A. Rasch, R. Schulze, and S. Gorlatch, “Generating portable high-
performance code via multi-dimensional homomorphisms,” in 2019 28th
International Conference on Parallel Architectures and Compilation Tech-
niques (PACT), 2019, pp. 354-369.

A. Rasch, R. Schulze, M. Steuwer, and S. Gorlatch, “Efficient auto-
tuning of parallel programs with interdependent tuning parameters via
auto-tuning framework (atf),” ACM Trans. Archit. Code Optim., vol. 18,
no. 1, Jan. 2021. [Online]. Available: https://doi.org/10.1145/3427093
M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg,
R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker,
V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow:
A system for large-scale machine learning,” in [2th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16). Savannah, GA: USENIX Association, Nov. 2016, pp. 265-283.
[Online]. Available: https://www.usenix.org/conference/osdil6/technical-
sessions/presentation/abadi

(2]

[3]

(4]

A. Krishnamurthy, “TVM: An automated end-to-end optimizing
compiler for deep learning,” in /3th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). Carlsbad, CA:
USENIX Association, Oct. 2018, pp. 578-594. [Online]. Available:
https://www.usenix.org/conference/osdil8/presentation/chen

L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali, Y. Wang,
J. Yang, D. Zhuo, K. Sen, J. E. Gonzalez, and I. Stoica, “Ansor:
Generating high-performance tensor programs for deep learning,” in /4th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, Nov. 2020, pp. 863-879. [Online].
Available: https://www.usenix.org/conference/osdi20/presentation/zheng
N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. Devito,
W. S. Moses, S. Verdoolaege, A. Adams, and A. Cohen, “The next
700 accelerated layers: From mathematical expressions of network
computation graphs to accelerated gpu kernels, automatically,” ACM
Trans. Archit. Code Optim., vol. 16, no. 4, Oct. 2019. [Online].
Available: https://doi.org/10.1145/3355606
Google Research. BERT GitHub Repository.
https://github.com/google-research/bert

(6]

(71

Available:

[8] [Online].

