Code Generation & Optimization for Deep-Learning Computations on GPUs via Multi-Dimensional Homomorphisms Richard Schulze University of Muenster Germany r.schulze@uni-muenster.de Ari Rasch University of Muenster Germany a.rasch@uni-muenster.de Sergei Gorlatch University of Muenster Germany gorlatch@uni-muenster.de ### I. INTRODUCTION Deep Learning (DL) is currently the most popular machine-learning method in the area of artificial intelligence. DL programs consist of multiple, data-parallel computations (like linear algebra routines and tensor operations), making DL programs time intensive. We present our work-in-progress code generation and optimization approach for DL computations based on the algebraic formalism of Multi-Dimensional Homomorphisms (MDH) [1]. We show that popular DL computations can be expressed in the MDH formalism, thereby enabling exploiting the already existing MDH GPU code generation and optimization approach [2], [3] which has proven to achieve high performance and was so far not been focused on DL. Furthermore, we show that the MDH formalism is more expressive than the state-of-the-art DL abstractions (e.g., as provided by TensorFlow [4]): for example, MDH can express multiple DL computations (e.g., multiple element-wise computations) as a single MDH expression, which enables MDH optimizations (like tiling and parallelization) across the computations. Our experiments confirm that our MDH-based approach achieves better performance than the state of the art, including Apache TVM [5], [6] and Facebook's TC [7]. ### II. THE MDH FORMALISM We demonstrate the existing MDH formalism by expressing and discussing the example of matrix multiplication: $$\begin{split} \text{MatMul}^{<\text{T}\in\text{Type}\,|\,M,\,N,\,K\in\mathbb{N}^>} := \\ & \text{out_view}^{<\text{T}>} \ (\,\text{C}:\,(\text{i},\,\text{j},\,\text{k})\,\mapsto\,(\text{i},\,\text{j})\,\,\,)\,\,\circ \\ & \text{md_hom}^{<\text{M},\,N,\,K^>}\,(\,*,\,(+\!\!+_1,+\!\!+_2,\,+)\,\,\,)\,\,\circ \\ & \text{inp_view}^{<\text{T},\,T^>}(\,\text{A}:\,(\text{i},\,\text{j},\,\text{k})\,\mapsto\,(\text{i},\,\text{k})\,\,, \\ & \text{B}:\,(\text{i},\,\text{j},\,\text{k})\,\mapsto\,(\text{k},\,\text{j})\,\,) \end{split}$$ Here, we first fuse the domain-specific input of MatMul – two matrices $A \in T^{M \times K}$ and $B \in T^{K \times N}$ both of type T (e.g., T=float or T=double) – to a 3-dimensional array comprising pairs $(A[i,k],B[k,j]) \in T \times T$. For this, we use pattern inp_view which the MDH formalism provides to uniformly prepare a domain-specific input for md_hom. After fusing MatMuls's two input matrices, we apply MatMul's scalar function * (multiplication) to each pair within the array, and we combine the obtained results in dimension 1 and 2 via ++1 and ++2 (concatenation), and in dimension 3 via + (addition). Pattern out_view is trivial in this example, but could potentially be used to store the result matrix as transposed (by replacing "(i,j,k) \mapsto (i,j)" with "(i,j,k) \mapsto (i,j)" with "(i,j,k) \mapsto (i,j)" with "(i,j,k) \mapsto (i,sl)" with "(i,j,k) \mapsto (i,sl)" or in a stride fashion (replacing "(i,j,k) \mapsto (i,sl)" with "(i,j,k) \mapsto (i,sl)", etc. # III. DL COMPUTATIONS EXPRESSED IN THE MDH FORMALISM Table I shows how popular DL computations are expressed in the MDH formalism; the implementations are taken from the TensorFlow implementation of the real-world BERT neural network [8]. Fig. 1 shows for an illustrative example subgraph of BERT's computation graph that it can be expressed as a single MDH expression, thereby enabling MDH optimizations [2], [3] across the computation nodes (parallelization, tiling, etc). # IV. EXPERIMENTAL RESULTS We present our preliminary experimental results on NVIDIA V100 GPU for the example DL computations *BiasAdd Gradient* (*BiasAddGrad*) and *Batched Matrix Multiplication* (*BatchMatMul*) [4], as well as for the BERT's subgraph shown in Fig. 1. We confirm that our MDH-based approach [2], [3] achieves better performance than the newest versions of TensorFlow (TF) [4], TVM [5], [6], and TC [7] on real-world data sizes taken from the BERT [8] network: - BiasAddGrad: MDH's speedup over TF is $> 1.5\times$, TVM is $> 2.9\times$, and TC is $> 1.7\times$; - BatchMatMul: MDH's speedup over TVM is $> 1.1 \times$, and TC is $> 1.9 \times$ (TF has no GPU impl. for BatchMatMul); - BERT's subgraph (Fig. 1): MDH's speedup over TF is $> 4.9 \times$, TVM is $> 3.7 \times$, and TC is $> 1.7 \times$. TABLE I POPULAR DL COMPUTATIONS EXPRESSED IN THE MDH FORMALISM (SOME META-PARAMETERS OMITTED VIA ELLIPSIS FOR BREVITY). | Operator | out_view <> | md_hom<> | inp_view <> | |---------------------------------------|---|---|---| | Mu1<> | OB1: $(i,j) \mapsto (i,j)$ | * , (++1,++2) | $ \begin{array}{c} \text{IB1:} (\text{i}, \text{j}) \mapsto (\text{i}, \text{j}) \;, \\ \text{IB2:} (\text{i}, \text{j}) \mapsto (\text{i}, \text{j}) \end{array} $ | | Sub<> | $OB1:(i,j) \mapsto (i,j)$ | - , (++ ₁ ,++ ₂) | $[B1:(i,j) \mapsto (i,j),$ $[B2:(i,j) \mapsto (i,j)$ | | ExpandDims <axis,d∈n =""></axis,d∈n> | $\texttt{OB1:}(\texttt{i}_1,\ldots,\texttt{i}_D) \mapsto (\ldots,\texttt{i}_{\texttt{axis}-1},0,\texttt{i}_{\texttt{axis}},\ldots)$ | id , $(++_1, \ldots ++_D)$ | $\mathtt{IB1:}(\mathtt{i}_1,\ldots,\mathtt{i}_D) \mapsto (\mathtt{i}_1,\ldots,\mathtt{i}_D)$ | | BiasAddGrad NHWC > | OB1: $(i,j) \mapsto (j)$ | $id , (+, ++_2)$ | IB1: $(i,j) \mapsto (i,j)$ | | BatchMatMul < N, N > | OB1: $(b1,b2,i,j,k) \mapsto (b1,b2,i,j)$ | $*$, $(++_1, \dots, ++_4, +)$ | IB1: $(b1,b2,i,j,k) \mapsto (b1,b2,i,k)$,
IB2: $(b1,b2,i,j,k) \mapsto (b1,b2,k,j)$ | Fig. 1. Expressing an example subgraph of the BERT neural network (left) as a single MDH expression (right). #### V. FUTURE WORK We will significantly extend Table I, and we will describe in detail our methodology to generating a single MDH expression from DL subgraphs (here only briefly shown in Fig. 1 for a simple, illustrative example). Moreover, we will extend our experiments toward further architectures (multi-core CPUs, etc) and neural networks. ## REFERENCES - [1] A. Rasch and S. Gorlatch, "Multi-dimensional homomorphisms and their implementation in opencl," *International Journal of Parallel Programming*, vol. 46, pp. pp. 101–119, 2018. [Online]. Available: https://doi.org/10.1007/s10766-017-0508-z - [2] A. Rasch, R. Schulze, and S. Gorlatch, "Generating portable high-performance code via multi-dimensional homomorphisms," in 2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT), 2019, pp. 354–369. - [3] A. Rasch, R. Schulze, M. Steuwer, and S. Gorlatch, "Efficient autotuning of parallel programs with interdependent tuning parameters via auto-tuning framework (atf)," ACM Trans. Archit. Code Optim., vol. 18, no. 1, Jan. 2021. [Online]. Available: https://doi.org/10.1145/3427093 - [4] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, "Tensorflow: A system for large-scale machine learning," in 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). Savannah, GA: USENIX Association, Nov. 2016, pp. 265–283. [Online]. Available: https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi - [5] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, "TVM: An automated end-to-end optimizing compiler for deep learning," in 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18). Carlsbad, CA: USENIX Association, Oct. 2018, pp. 578–594. [Online]. Available: https://www.usenix.org/conference/osdi18/presentation/chen - [6] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali, Y. Wang, J. Yang, D. Zhuo, K. Sen, J. E. Gonzalez, and I. Stoica, "Ansor: Generating high-performance tensor programs for deep learning," in 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX Association, Nov. 2020, pp. 863–879. [Online]. Available: https://www.usenix.org/conference/osdi20/presentation/zheng - [7] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. Devito, W. S. Moses, S. Verdoolaege, A. Adams, and A. Cohen, "The next 700 accelerated layers: From mathematical expressions of network computation graphs to accelerated gpu kernels, automatically," ACM Trans. Archit. Code Optim., vol. 16, no. 4, Oct. 2019. [Online]. Available: https://doi.org/10.1145/3355606 - [8] Google Research. BERT GitHub Repository. [Online]. Available: https://github.com/google-research/bert