
Performance, Portability, and Productivity
for Data-Parallel Applications

on Multi- and Many-Core Architectures
Ari Rasch

a.rasch@wwu.de
University of Muenster (Germany)

Abstract
We present a novel approach to performance, portability,
and productivity of data-parallel computations on multi- and
many-core architectures. Our approach is based on Multi-
Dimensional Homomorphisms (MDHs) – a formally defined
class of functions that cover important data-parallel computa-
tions, e.g., linear algebra routines (BLAS) and stencil compu-
tations. For MDHs, we present a high-level Domain-Specific
Language (DSL) that contributes to high user productivity,
and we propose a corresponding DSL compiler which auto-
matically generates optimized (auto-tuned) OpenCL code,
thereby providing high, portable performance, over different
architectures and input sizes, for programs in our DSL. Our
experimental results, on Intel CPU and NVIDIA GPU, demon-
strate competitive and often significantly better performance
of our approach as compared to state-of-practice approaches,
e.g., Intel MKL/MKL-DNN and NVIDIA cuBLAS/cuDNN.

CCSConcepts •General and reference→Performance;
• Computer systems organization→ Parallel architec-
tures; • Software and its engineering → Parallel pro-
gramming languages.

Keywords Multi-Dimensional Homomorphisms, OpenCL,
Auto-Tuning, GPU, multi-core CPU, BLAS, Stencils

ACM Reference Format:
Ari Rasch. 2019. Performance, Portability, and Productivity for Data-
Parallel Applications on Multi- and Many-Core Architectures. In
Proceedings of the 2019 ACM SIGPLAN International Conference on
Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH Companion ’19), October 20–25, 2019, Athens,
Greece. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3359061.3361072

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SPLASH Companion ’19, October 20–25, 2019, Athens, Greece
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6992-3/19/10. . . $15.00
https://doi.org/10.1145/3359061.3361072

1 Motivation
Achieving performance, portability, and productivity for
data-parallel applications targeting state-of-the-art paral-
lel architectures and varying input sizes is challenging. For
example, for high performance, the programmer has to opti-
mize its source code for the complex hardware of modern
parallel devices, e.g., Intel multi-core CPU or NVIDIA many-
core GPU which are characterized by deep and complex core
andmemory hierarchies. For portable performance over such
architectures – i.e., the same source code achieves consis-
tent high performance over different architectures – the
programmer has to consider that architectures may differ
significantly in their characteristics, e.g., the number of cores,
cache sizes, automatically managed caches (as in CPUs) vs.
manually manages caches (GPUs), etc. Achieving portable
performance over different input sizes is even more chal-
lenging: for example, a high-performance implementation
of matrix multiplication on big power-of-two input sizes,
as often used in the traditional field of numerical computa-
tions, is programmed fundamentally differently as compared
to matrix multiplication on small, irregularly shaped input
matrices, e.g., as currently occurring in deep learning. Fur-
thermore, modern architectures are usually programmed on
a low level, e.g., in OpenCL – a popular standard for uni-
formly programming different architectures (e.g., CPU and
GPU) – making programming such architectures tedious and
cumbersome, e.g., because of complex index computations
and synchronizationwhich severely affect programmer’s pro-
ductivity. Moreover, state-of-the-art parallel programming
approaches (such as OpenCL) require so-called host code for
their execution, which is cumbersome and error-prone to
program: for example, in host code, the programmer has to
explicitly perform data transfers between host and device
memory and exploit asynchronous computations efficiency
for high performance (e.g., overlapping data transfers and/or
device computations).

We provide an approach to address all the aforementioned
challenges – performance, portability, and productivity – for
our Multi-Dimensional Homomorphisms (MDHs):

26

https://doi.org/10.1145/3359061.3361072
https://doi.org/10.1145/3359061.3361072
https://doi.org/10.1145/3359061.3361072


SPLASH Companion ’19, October 20–25, 2019, Athens, Greece Ari Rasch

1. We define MDHs [12] formally as a class of functions
that cover data-parallel computations, e.g., linear alge-
bra routines (BLAS) and stencil computations.

2. We enable conveniently expressing MDHs by provid-
ing a high-level Domain-Specific Language (DSL) for
them [12].

3. We provide a DSL compiler [15] to automatically gen-
erate OpenCL code from expressions in our DSL – by
relying on OpenCL, we target various parallel architec-
tures, e.g., Intel CPU and NVIDIA GPU. We generate
our OpenCL code as fully automatically optimizable
(auto-tunable) – for any combination of a target de-
vice and input size – by generating our code as tar-
geted to the OpenCL’s abstract device models and as
parametrized in these models’ performance-critical pa-
rameters, e.g., the number of threads and sizes of tiles
on different core/memory layers.

4. We provide our Auto-Tuning Framework (ATF) [10,
11] – a general-purpose auto-tuning approach – which
we use to automatically choose optimized values of
performance-critical parameters in our generated code –
for any combination of a target device and input size.

5. We provide our dOCAL [13, 14] library – a high-level
programming abstraction for OpenCL’s low-level host
code – which we use to conveniently execute our gen-
erated and auto-tuned OpenCL code on the devices of
a distributed, heterogeneous system.

We show that we reach with our MDH+ATF+dOCAL ap-
proach often significantly better performance than Lift [16] –
a popular, performance-portable approach which is closely
related to our work. We also show that we reach compet-
itive and sometimes even better performance than hand-
optimized approaches, e.g., vendor libraries Intel MKL [5]
and NVIDIA cuBLAS [8] for linear algebra routines (BLAS) –
both libraries are optimized at the assembly-level for highest
performance on Intel or NVIDIA hardware, respectively,

2 Approach
Our approach consists of three major steps, as follows.

2.1 Generation
We generate code for MDHs which are formally defined
as follows [12]: Let T and T ′ be two arbitrary data types
(e.g., float). A function h : T [N1 ] . . . [Nd ] → T ′ on d-
dimensional arrays of size N1 × . . . × Nd and with elements
in T is called a Multi-Dimensional Homomorphism (MDH)
iff there exist combine operators ⊛1, . . . , ⊛d : T ′ ×T ′ → T ′,
such that for each integer k ∈ [1,d] and arbitrary, concate-
nated input array a ++k b in dimension k , the homomorphic
property is satisfied: h( a ++k b ) = h(a ) ⊛k h(b ).
In words: the value ofh on a concatenated array in dimension
k can be computed by applying h to the array’s parts a and b
and then combining the results by combine operator ⊛k .

We express MDHs in our DSL using our md_hom higher-
order function [12] (a.k.a. parallel pattern) which we define
as follows. Every MDH h is uniquely determined by its com-
bine operators ⊛1, . . . , ⊛d and its behavior f on scalar values
(i.e., f (a[0] . . . [0] ) = h(a) for every a ∈ T [1] . . . [1]). This
enables expressing h using our pattern md_hom which takes
these functions as parameters:h = md_hom( f , (⊛1, . . . , ⊛d ) ).
For example, matrixmultiplication is expressed using md_hom
as follows: md_hom( ∗, (++, ++, +) ) ◦ view(A,B)(i,j,k)(
A[i,k], B[k,j]). Here, view is the second pattern of our
DSL, which we use to uniformly prepare a domain-specific
input for md_hom. For example, for matrix multiplication,
pattern view takes as input the two matrices A,B and the ar-
ray indices i,j,k; it yields the pair (A[ i ][ k ], B[ k ][ j ])
which is used as input for md_hom’s scalar function f = ∗.

We generate OpenCL code for MDHs expressed using pat-
terns md_hom and view (which we both have embedded in
C++ as functions of a programming library). A major feature
of our code is that we generate it as targeted to the OpenCL’s
abstract platform and memory models (which uniformly rep-
resent the core/memory hierarchy of different architectures,
e.g., CPU and GPU), and as parametrized in the performance-
critical parameters of these two models; this enables fully
automatically optimizing our generated code, for a particular
target device and input size, using auto-tuning. For example,
our code is parametrized in the number of threads and the
sizes of tiles – on both layers of OpenCL’s two models, and in
all dimensions of the MDH’s multi-dimensional input; these
sizes and numbers are very critical for high performance.

Our MDH theory and our DSL for MDHs are described in
detail in [12], and our OpenCL code generation approach for

MDHs is presented in [15].

2.2 Optimization
To determine optimized values of performance-critical pa-
rameters in our generated code, we provide our general-
purpose Auto-Tuning Framework (ATF) [10, 11] which com-
bines major advantages over other general-purpose auto-
tuning approaches, e.g., [1, 6, 9, 18]; for example, using ATF,
we can auto-tune programs written in arbitrary program-
ming languages and from arbitrary application domains.
A major feature of ATF is that it supports auto-tuning of

programs that have interdependent tuning parameters. For
example, in our generated code, we auto-tune the sizes of
tiles on different memory layers, and a tile size on a lower
memory layer has to be smaller or equal than a tile size
on an upper layer, because a lower-layer tile is a chunk of
an upper-layer tile – this can be conveniently expressed
in ATF, and ATF efficiently generates, stores, and explores
the search space of such interdependent tuning parameters,
which is currently not possible using other state-of-the-art
auto-tuning frameworks.

Our ATF framework is described in detail in [10, 11].

27



Performance, Portability, and Productivity for Data-Parallel Applications on . . . SPLASH Companion ’19, October 20–25, 2019, Athens, Greece

2.3 Execution
To execute our generated and auto-tuned OpenCL code,
we provide our novel dOCAL [14] approach. dOCAL is a
high-level programming abstraction – implemented as a C++
programming library – that allows conveniently executing
OpenCL code on the devices of a distributed, heterogeneous
system. For this, dOCAL simplifies implementing OpenCL’s
host code which consists of boilerplate low-level commands,
e.g., for data transfers between host and device memory,
and synchronization. For example, dOCAL automatically ini-
tializes OpenCL, manages the low-level host-code objects
(e.g., the so-called OpenCL contexts and command queues),
uses low-level functions for allocating and managing mem-
ory on the devices and the host, and it performs synchro-
nization between data transfers and/or computations on
the device/host. Moreover, dOCAL automatically provides
asynchronous computation efficiency (e.g., overlapping data
transfers and/or device computations) by automatically gen-
erating and maintaining a data-dependency graph. dOCAL
also enables conveniently executing OpenCL programs on
the devices of remote nodes by relying on the Boost.Asio
library.

Our dOCAL approach is described in detail in [13, 14].

3 Evaluation Methodology
All experiments described in this section can be reproduced
using our artifact implementation in [2].

We evaluate our MDH+ATF+dOCAL approach using com-
putations from two prominent areas: 1) GEneral Matrix-
Matrix multiplication (GEMM) and GEneral Matrix-Vector
multiplication (GEMV) from the area of linear algebra (BLAS),
and 2) Gaussian 2D convolution and Jacobi 3D from the area
of stencil computations.

We compare the performance of our automatically gener-
ated and auto-tuned OpenCL code on CPU and GPU against
well-performing competitors: 1) Lift – an academic frame-
work – which is closely related to our approach and has
proven to provide high, portable performance for BLAS [17]
and stencil computations [3], and 2) Intel MKL/MKL-DNN [4,
5] and NVIDIA cuBLAS/cuDNN [7, 8] – vendor libraries that
are optimized by hand at the assembly level to provide high
performance for BLAS and stencil computations on Intel or
NVIDIA hardware, correspondingly.

Figure 1 shows our experimental results.We observe better
performance of our approach as compared to our competi-
tors, because we generate a flexible OpenCL implementation
whose parallelization and tiling strategies can be auto-tuned
for both layers of OpenCL’s platform and memory model
and in all dimensions of the multi-dimensional input.

Our results (also for further computations, e.g.,
from the area of data mining and tensor contractions)

are discussed in detail in [15].

RW PC RW PC

AF fails 3.04 1.51 1.99

VL 4.22 0.74 1.05 0.87

CPU
GEMM GEMV

RW PC RW PC

AF 4.33 1.17 3.52 2.98

VL 2.91 0.83 1.03 1.00

GEMM GEMV
GPU

RW PC RW PC

AF 4.90 5.96 1.94 2.49

VL 6.99 14.31 N/A N/A

Gaussian (2D) Jacobi (3D)
CPU

RW PC RW PC

AF 2.33 1.09 1.14 1.02

VL 3.78 19.11 N/A N/A

Gaussian (2D)
GPU

Jacobi (3D)

Figure 1. Speedups/slowdowns (higher is better) of our
automatically generated and auto-tuned code over: i) aca-
demic framework (AF) Lift, and ii) vendor libraries (VL) Intel
MKL/MKL-DNN and NVIDIA cuBLAS/cuDNN. We use for
evaluation both Intel Xeon E5-2640 v2 8-core CPU (left) and
NVIDIA Tesla V100-SXM2-16GB GPU (right), and we use
input sizes from real-world (RW) applications, as well as sizes
that are preferable for our competitors (PC).

References
[1] J. Ansel et al. 2014. OpenTuner: An Extensible Framework for Program

Autotuning (PACT). 303–316.
[2] Artifact Implementation. 2019. https://gitlab.com/mdh-project/pact_

2019_artifact.
[3] B. Hagedorn et al. 2018. High Performance Stencil Code Generation

with Lift (CGO). 100–112.
[4] Intel. 2018. Math Kernel Library for Deep Learning Net-

works. https://software.intel.com/en-us/articles/intel-mkl-dnn-part-
1-library-overview-and-installation

[5] Intel. 2019. Math Kernel Library. https://software.intel.com/en-us/mkl
[6] C. Nugteren et al. 2015. CLTune: A Generic Auto-Tuner for OpenCL

Kernels (MCSOC). 195–202.
[7] NVIDIA. 2018. CUDADeep Neural Network library. https://developer.

nvidia.com/cudnn
[8] NVIDIA. 2019. cuBLAS library. https://developer.nvidia.com/cublas
[9] P. Pfaffe et al. 2019. Efficient Hierarchical Online-autotuning: A Case

Study on Polyhedral Accelerator Mapping (ICS). 354–366.
[10] A. Rasch et al. 2017. ATF: A Generic Auto-Tuning Framework. In

IEEE 19th International Conference on High Performance Computing
and Communications (HPCC). 64–71.

[11] A. Rasch et al. 2018. ATF: A Generic, Directive-Based Auto-Tuning
Framework. Concurrency and Computation: Practice and Experi-
ence, 13 pp.

[12] A. Rasch et al. 2018. Multi-Dimensional Homomorphisms and Their
Implementation in OpenCL. International Journal of Parallel Program-
ming, 101–119.

[13] A. Rasch et al. 2018. OCAL: An Abstraction for Host-Code Program-
ming with OpenCL and CUDA. In IEEE 24th International Conference
on Parallel and Distributed Systems (ICPADS). 408–416.

[14] A. Rasch et al. 2019. dOCAL: High-Level Distributed Programming
with OpenCL and CUDA. The Journal of Supercomputing, 22 pp.

[15] A. Rasch et al. 2019. Generating Portable High-Performance Code via
Multi-Dimensional Homomorphisms. In International Conference on
Parallel Architecture and Compilation Techniques (PACT). (accepted).

[16] M. Steuwer et al. 2015. Generating Performance Portable Code Using
Rewrite Rules (ICFP). 205–217.

[17] M. Steuwer et al. 2016. Matrix Multiplication Beyond Auto-tuning:
Rewrite-based GPU Code Generation (CASES). 15 pp.

[18] B. Werkhoven. 2019. Kernel Tuner: A search-optimizing GPU code
auto-tuner. Future Generation Computer Systems (2019), 347 – 358.

28

https://gitlab.com/mdh-project/pact_2019_artifact
https://gitlab.com/mdh-project/pact_2019_artifact
https://software.intel.com/en-us/articles/intel-mkl-dnn-part-1-library-overview-and-installation
https://software.intel.com/en-us/articles/intel-mkl-dnn-part-1-library-overview-and-installation
https://software.intel.com/en-us/mkl
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cublas

	Abstract
	1 Motivation
	2 Approach
	2.1 Generation
	2.2 Optimization
	2.3 Execution

	3 Evaluation Methodology
	References

