= == Universitit Compilersfar
Munster Machine Learning,

MDH+ATF: Code Generation & Optimization
for Deep-Learning Computations

Ari Rasch, Richard Schulze
University of Munster, Germany

Goal of MDH+ATF

de for DL computations:

An approach to Generating (MDH) & Optimizing (ATF) co

Al Scientist

High-Level Program
Representation

Kernel void gemv_fst(_global floabs in_matrix,
global floats in_vector,
“global floatx out_vector,

// private memory for a WI's computation
__private float res_prv

// local memory for a WG's computation
float res_Lcll NUM_WI_1][NUM_WI_2 1;

// iteration over P_sq blocks
for(int i_sq =1 ; i_sq <= NUM SQ_1 ; ++i_sq) {
for(int j_sq =1 ; j_sq <= NOM_S0_2 ; ++j_sq) {
res_prv = 0.0f;

// sequential computation on a P_wi partition
for(int i WI_PART_SIZE_1 ; ++i)

i

<3 WIPARTSIZE2 ; 4+)
res_prv += my_| pw)(i3, 0) *my_pwi(i, 3, 1);

7/ store result in local memory
res_LcUl WI_ID_1][WI_ID_2] = res_prv;

barrier(CLK_LOCAL_MEM_FENCE);

// combine the WIs' results in dimension x
for(int stride = NUM_WI_2 / 2 ; stride > 0 ; stride /= 2)

if(WI_TD_2 < str:
res, 1(1[WI_ID_ hs][WI_ID_2] += res_lcl[WI_ID_1][WI_ID_2 + stride 1;|

barrier(CLK_LOCAL_MEM_FENCE);

// store Ws* results in global memory

if(WI_ID_2
my_res("i_sq) = res_lcU[WI_ID_1 1[0];

barrier(CLK_LOCAL_MEM_FENCE);

} // end of for-loop j_sa

} // end of for-loop i_sq
end of kernel

[TOPLAS 24, PACT’19,
IJPP’18]

(1)

Generation

Executable

Low-Level Program
Program Code

Representation

[Kernel void gemv_fst(_global floats in_matrix,
“global floats in_vector,

NVIDIA
CUDA

“global floatx out_vector,

K
// private memory for a WI's computation -&
0.0f;

__private float res_prv =

/4, Local nemory for 2 We's computatio
oot res tcUl NURWE T 1T NUM_WT_2 1;

q blocks
NUM_SQ_1 ; ++i_sq) {
150_2 ; ++j_sq) {

// iteration over
for(int isq =1 ; i_s
for(st jsa =1
res_prv = 0.0f;

1/ sequential computation on a Poui partition
for T_PAR)
for(in
res_prv

i

ypmtx, i, 0) xmypwil i, j, 1);

// store result in local memory
res_lcUl WI_ID_1][WI_ID_2] = res_prv;

barrier(CLK_LOCAL_MEM_FENCE);

// combine the WIs' results in dimension x
For(int stride = NUM_WI_2 / 2 ; stride > 0 ; stride /= 2) A

if(WI_TD_2 < str
res_Tcll WI_ID_ hs][w1 102] 4= res_lcll WI_ID_1][WI_ID_2 + stride];

barrier(CLK_LOCAL_MEM_FENCE);
. OpenCL

// store Ws' results in global memory

if(WI_ID_2
my_res("i_sq) = res_lcUl WI_ID_1 1[0];

barrier(CLK_LOCAL_MEM_FENCE);

} // end of for-loop j_sa
} // end of for-loop i_sq

end of kernel

(2)

Optimization
[TACO’21, CCPE’19,

HPCC’'17]

1. Part: How to generate automaticall
optimizable (auto-tunable) DL code?

Microsoft

" NVIDIA.

Google

Parallel
Architectures

2. Part: How to optimize
auto-tune) DL code?

Goal of MDH+ATF

An approach to Generating (MDH) & Optimizing (ATF) code for DL computations:

High-Level Program Low-Level Program Executable
Representation Representation Program Code

[Rernel void gemv_fst(_global Tloatr In_matrix, [Rernel void gemv_fst(_global Tloatr In_matrix, 'ﬁ‘ ‘
global floatx in_vector, global floatx in_vector,
T3loal floats out.vector, T3lobal floats out.vector, NVIDIA
i€ i€ CUDA
7 oFivate float fes prv = 0.6%; private float res_prv = 0.0f;
/7 locel nenory for 3 WG's conputation // local memory for a WG's computatio . *
float res_Lcll NUM_WI_1 11 NUM_WI_2 1; M laest "Tloat res Tell NmWE 111 NUMWI_2 13 ST Icroso
// iteration over P_sq blocks // iteration over P_sq blocks .
for(int i_sq = 1 ; isq <= NUM_SQ_1 ; ++i_sq) { for(int i_sq =1 ; i.sq <= NUM_SQ_1 ; ++i_sq) { i (TR 5wt e
for(int j_sq = 1; j_sq <= NOM._SQ_2 ; +7j_sq) { for(int j_sq = 1; j_sq <= NON_SQ_2 ; ++j_sq) { T 0 1 e e 0 1 e
Tespr'= 8.0t res_prv = 0.0f; i S
1/ sequential comutation o a Poui partition 1/ sequential computation on a P_wi partition
1 T_PART SIZE_1 ; ++i) T_PART SIZE_1 ; ++i)
L4) < WLPARTSTZE § v+) L4 Y < WLPARTSIZE § v+) .
res_prv += my_pwi(i, j, 0) x my_pwi 1, j, 1); res_prv += my_p il 1, 3, 0) mypi(1, 3, 1);
// store result in local memory // store result in local memory
res_LcUl WI_ID_1][WI_ID_2] = res_prv; res_LcUl WI_ID_1][WI_ID_2] = res_prv; :
4 barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE); H 4
// conbine the WIs' results in dimension x // combine the WIs' results in dimension x .
for(int stride = NM_WI_2 / 2 ; stride > 0 ; stride /= 2) A for(int stride = NUN_WI_2 / 2 ; stride > 0 ; stride /= 2) .
o { .
if(WI_ID_2 < str - if(WI_ID_2 < str K\
et AT WL B AT WI10 2 1 4= res Ll WEID1 1 WLID 2 + stride 1 : et AT WE B0 AT WI0.2 1 4= res L1l WEID 1 11 WLID 2 + stride 1 : = & /“
: H s aEm
barrier(CLK_LOCAL_MEM_FENCE); . barrier(CLK_LOCAL_MEM_FENCE); H nvl DIA
¥ H) H RS
- - g OpenCL @
// store Wos' results in global memory . // store Wos' results in global memory B
if(WI_ID_2 =0) H i WI_T0_2 H ‘
- - my_res(i_sq) = res_Lcl[WI_ID_1](0]; N my_res(i_sq) = res_Lcl[WI_ID_1](0]; -)
Al Scientist : :
} // end of for-loop j_sq H } // end of for-loop j_sa H [,
} 7/ end of for-loop i_sq } 7/ end of for-loop i_sq
end of kernel end of kernel d

(1) (2)

Generation Optimization parallel
[TOPLAS’24, PACT’19, [TACO’21, CCPE’19, Architect

IJPP’18] HPCC’17] rchitectures

The ultimate goal of MDH+ATF is to simultaneously achieve

Performance & Portability & Productivity
for DL computations'

1MDH not limited to DL: targets arbitrary kinds of data-parallel computations

Code Generation via MDH

Overview Getting Started Code Examples Publications Citations Contact

Multi-Dimensional Homomorphisms (MDH)
/\/\ D l—l An Algebraic Approach Toward Performance & Portability & Productivity

for Data-Parallel Computations

Overview

The approach of Multi-Dimensional Homomorphisms (MDH) is an algebraic formalism for systematically reasoning about de-
composition and re-composition strategies of data-parallel computations (such as linear algebra routines and stencil
computations) for the memory and core hierarchies of state-of-the-art parallel architectures (GPUs, multi-core CPU, multi-
device and multi-node systems, etc).

The MDH approach (formally) introduces:

1. High-Level Program Representation (Contribution 1) that enables the user conveniently implementing data-parallel
computations, agnostic from hardware and optimization details;

2. Low-Level Program Representation (Contribution 2) that expresses device- and data-optimized de- and re-composition
strategies of computations;

3. Lowering Process (Contribution 3) that fully automatically lowers a data-parallel computation expressed in its high-level
program representation to an optimized instance in its low-level representation, based on concepts from automatic
performance optimization (a.k.a. auto-tuning), using the Auto-Tuning Framework (ATF).

The MDH's low-level representation is designed such that Code Generation from it (e.g., in OpenMP for CPUs, CUDA for
NVIDIA GPUs, or OpenCL for multiple kinds of architectures) becomes straightforward.

- Contribution (1) Contribution (2)
FROEIA . Contribution (3) |
SR Gl

Data Stencils \\ HL LL -
Mining M —_— 5 U
'—a;a:alm o REP T REP \\-' OpenCL
TRt Chemistry
- I - T . L

User-Defined Straightforward

Automatized
(via Auto-Tuning) T

Our Experiments report encouraging results on GPUs and CPUs for MDH as compared to state-of-practice approaches,
including NVIDIA cuBLAS/cuDNN and Intel oneMKL/oneDNN which are hand-optimized libraries provided by vendors.

ACM TOPLAS 2024

https://mdh-lang.org

(De/Re)-Composition of Data-Parallel Computations via
Multi-Dimensional Homomorphisms

ARI RASCH, University of Muenster, Germany

Data-parallel computations, such as linear algebra routines and stencil computations, constitute one of the most
relevant classes in parallel computing, e.g., due to their importance for deep learning. Efficiently de-composing
such computations for the memory and core hierarchies of modern architectures and re-composing the
computed intermediate results back to the final result—we say (de/re)-composition for short—is key to achieve
high performance for these computations on, e.g., GPU and CPU. Current high-level approaches to generating
data-parallel code are often restricted to a particular subclass of data-parallel computations and architectures
(e.g., only linear algebra routines on only GPU or only stencil computations), and/or the approaches rely
on a user-guided optimization process for a well-performing (de/re)-composition of computations, which is
complex and error prone for the user.

We formally introduce a systematic (de/re)-composition approach, based on the algebraic formalism of
Multi-Dimensional Homomorphisms (MDHs). Our approach is designed as general enough to be applicable to
a wide range of data-parallel computations and for various kinds of target parallel architectures. To efficiently
target the deep and complex memory and core hierarchies of contemporary architectures, we exploit our
introduced (de/re)-composition approach for a correct-by-construction, parametrized cache blocking, and
parallelization strategy. We show that our approach is powerful enough to express, in the same formalism, the
(de/re)-composition strategies of different classes of state-of-the-art approaches (scheduling-based, polyhedral,
etc.), and we demonstrate that the parameters of our strategies enable systematically generating code that
can be fully automatically optimized (auto-tuned) for the particular target architecture and characteristics of
the input and output data (e.g., their sizes and memory layouts). Particularly, our experiments confirm that
via auto-tuning, we achieve higher performance than state-of-the-art approaches, including hand-optimized
solutions provided by vendors (such as NVIDIA cuBLAS/cuDNN and Intel oneMKL/oneDNN), on real-world
datasets and for a variety of data-parallel computations, including linear algebra routines, stencil and quantum
chemistry computations, data mining algorithms, and computations that recently gained high attention due to
their relevance for deep learning.

CCS Concepts: « Computing methodologies — Parallel computing methodologies; Machine learning;
« Theory of computation — Program semantics; « Software and its engineering — Compilers;

Additional Key Words and Phrases: Code generation, data parallelism, auto-tuning, GPU, CPU, OpenMP,
CUDA, OpenCL, linear algebra, stencils computation, quantum chemistry, data mining, deep learning

A full version of this article is provided by Rasch [2024], which presents our novel concepts with all of their formal details. In
contrast to the full version, this article relies on a simplified formal foundation for better illustration and easier understanding.
We often refer the interested reader to Rasch [2024] for formal details that should not be required for understanding the
basic ideas and concepts of our approach.

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—project PPP-DL
(470527619).

Author’s Contact Information: Ari Rasch (Corresponding author), University of Muenster, Muenster, Germany; e-mail:
a.rasch@uni-muenster.de.

Goal of MDH

MDNH is a (formal) framework for expressing & optimizing data-parallel computations:

1.

Linear

Contribution (1)
Algebra E

Contribution (2)

OpenMP

Cdntribution (3)

Stencils CUDA

Data
Mining

OpenCL

Quantum
Chemistry

Alitomatized
T (viafAuto-Tuning) T
User Defined Straightforward

Contribution 1 (HL-REP): defines data parallelism, based on common algebraic properties of computations

& introduces higher-order functions for expressing these computations, agnostic from hardware and
optimization details while still capturing high-level information relevant for generating high-performing code

Contribution 2 (LL-REP): allows expressmg and reasoning about optimizations for the memory and core
hierarchies of contemporary pa : as@® optimizations to apply to arbitrary

combinations of data-parallel co F T d
Contribution 3 (—): introduces or arbitrary combinations of data-

parallel computations and parallel arohltectures —_ that aIIows fully automatic optimization (auto-tuning)

MDH: High-Level Representation

Goals:

1. Uniform:
should be able to express any kind of data-parallel computation, without relying on

domain-specific building blocks, extensions, etc.

2. Minimalistic:
should rely on less building blocks to keep language small and simple

3. Structured:
avoiding compositions and nestings of building blocks as much as possible,

thereby further contributing to the usability and simplicity of our language

MatVec TETYPEILKEN> . out view<T>(w:(i,k)—(i)) o
md hom<I,K>(x*, (#,+)) o

inp view<T,T>(M:(i,k)—(i,k) ,v:({i,k)~(k))

MDH High-Level Representation of MatVec
(discussed later)

MDH: High-Level Representation

@

Overview:

Matrix Matrix i n p_V ieW

Vector Vector | | >
Scalar .. s Scalar .. A

N /!

Domain-Specific

Data Representation
transforms

domain-specific data representation
to internal representation

Internal

Data Representation

A

®

Matrix
Vector
Scalar ..

md_hom out_view |matrix
IMH!INI I > Iinilil I A > Sc;ﬁ:fo: -
N

transforms
internal data representation
to domain-specific representation

computes

data parallel computation

Our high-level representation (formally) defines DL computations],

and it expresses these computations using exactly
three straightforwardly composed higher-order functions only

1 MDH not limited to DL.: targets arbitrary kinds of data-parallel computations

/

Domain-Specific
Data Representation

MDH: High-Level Representation

Example: MatVec expressed in MDH

MatVec TETPEILKEN> . ot view<T>(w: (i,k)~—(i)) o NOH
md hom<I,K>(*, (#,+)) o

inp view<T,T>(M:(i,k)~(i,k) ,v:(i,k)—~(k))

MDH High-Level Representation of MatVec

void MatVec(TI[I M, TII v, T[] w)

What is happening here: :

for(int i=0 ; i < I ; ++1i)
for(int k=0 ; k < K ; ++k)

« 1np_view captures the accesses to input data wlil %= MIATTK] * ulKkl;

¥ _ S
 md_hom expresses the data-parallel computation MatVec in C++ d

« out_view captures the accesses to output data

"We can generate such MDH expressions also automatically from straightforward (annotated) code in Python, C, ...

MDH: High-Level Representation

inp_view out_view
md_hom H f ’ ®1,...,®p Views I | I @)
MatMul<F,F> * +H,H, + MatMul<F,F> (Z’J7 k) (Z’ k) (7’)]’ k) — (ka]) (27‘7’ k) — (’L,j)
MatMul<F,T> * o+ + MatMul<F,T> (4,7, k) = (i, k) (@5, k) = (5, k) (i, 7, k) = (i,)
MatMul<T,F> * e, e, 4 MatMul<T,F> (4,7, k) = (k, 1) (i, 5, k) = (K, j) (i, 7, k) = (i,)
MatMul<T,T> * +H, +H, + MatMul<T,T> (%]7 k) — (k,l) (7’7]5 k) = (Ja k) (Zvja k) — (%J)
BatchMatMul<F,F> % Hyo, H,+ BatchMatMul<F,F> (bl, ,Z,j, k}) — (bl, ,Z,k) (bl,...,l,j,) — (bl, .,k,j) (bl,...,l,j, k) — (bl, ,Z,j)
BiasAddGrad<NHNC> id T, +,.+, H BiasAddGrad<NHWC> || (n,h,w,c) > (n,h,w,c) / (n,h,w,c) = (n, h,w)
BiasAddGrad<NCHW> id NIRRT BiasAddGrad<NCHW> || (n,c¢, h,w) — (n,c, h,w) / (n,c,h,w) — (n, h,w)
CheckNumerics () — (x == NaN) V...,V CheckNumerics (i1, -5ip) = (i, -iD) ’ (i1,...,ip) = ()
Sum<0><F> id 4, Sum<0><F> (i1,...,ip) = (i1,...,iD) s (i1,...,ip) + (i2,...,iD)
Sum<0><T> id +, Hy A, H Sum<0><T> (i1,---yip) ¥ (i1, ,ip) / (i1,---,ip) = (0,42, ...,ip)
Sum<1><F> id H, 4 A Sum<1><F> (il? .,’LD) = (il’ ’iD) 4 (ila 7iD) = (ilai?)a “aiD)
Sum<0, 1><F> id b, Sum<0, 1><F> (i1,...,ip) = (i1,..-,iD) / (i1,..-,ip) > (i3,...,iD)
B rod<05<ES 4 PTETR T Prod<0><F> (i1,.--.ip) — (i1, .-, iD) % (i1,.--.ip) — (i2, ..., ip)
A11<O><F; i.d &&7—'_'—7_{_"—"”’{_}_ A11<0><F> (il,...,ip)l—)(il,...,ip) / (il,...,iD>l—)(i2,...,iD)
Linear Algebra, Reductions, ... (Non-Endomorphic Operators) Linear Algebra, Reductions, ... (Non-Endomorphic Operators)
— Computation Specification — — Data Specification —
inp_view out_view
md_hom || f | ®1,...,®p Views I ‘ I 0
Fill id ETRTE Fill (i1,---,ip) = () / (i1,..-,ip) = (i1, -, ip)
ExpandDims<0> id o ExpandDims<0> (21, .,iD) — (il,...,iD) / (il, ,iD) — (O,il,lg,...,lp)
ExpandDims<1> id oo, H ExpandDims<0> (il,...,iD) — (il,...,iD) / (il, .,’iD) — (il,o,ig,. ,’LD)
ExpandDims<0, 1> id e, H ExpandDims<O0, 1> (il, .,iD> — (il,...,iD) / (il, .,iD) — (0,0,il,. .,iD)
Transpose<o> id NV Transpose<o> (i1,...,ip) = (0(i1),...,0(ip)) Y (i1,...,ip) — (i1,...,iD)
Exp exp .+ Exp (i1,-.-,ip) = (i1,-..,ip) / (i1,---5ip) = (i1, ,iD)
Mul * H, ..+ (il, .,’L'D)*—)(il,...,ip) (il,...,iD)'—)(il,...,iD) (il, . ,iD)H(ll, ..,iD)
BiasAdd<NHWC> + +H-, H, H, H Mul (21, 7iD)H (7:17"‘7iD) (7;17°"7iD) = (7’-17"'7ik717ik+17"'?iD) (7’17 72'D) = (llv "7iD)
BiasAdd<NCHW> + +H, +H, H, H : : :
Range (s,d,1) = (s +dx*1) + BiasAdd<NHWC> (n, h,w,c) — (n,h,w,c) (n, h,w,c) — (c) (n, h,w,c) — (n,h,w,c)
BiasAdd<NCHW> (n, e, hy,w) — (n,c, h,w) (n,c, h,w) — (c) (n,c, h,w) — (n,c, h,w)
Point-Wise, Re-Shaping, ... (Endomorphic Operators) Range @) =0 0 =0 (0= ()

— Computation Specification —

Point-Wise, Re-Shaping, ... (Endomorphic Operators)
— Data Specification —

Important DL computations can be (naturally & uniformly) expressed in MDH

MDH: High-Level Representation

Differences to existing approaches:

MatVec <TETYPEITLKN> .o oyt view<T>(w: (i,k)—(i)) o /\/\DI_‘
md hom<I,K> (¥} (&%)) o MatVec in MDH

inp view<T,T>(M:(i,k)~(i,k) ,v:(i,k)—»(k))

#mapl = affine_map<(d@, d1) —> (do, di1)>
MDH explicitly captures the #map2 = affine_map<(de, d1) —> (d1) >

' ini #map3 = affi de, d1) —> (de)
operations for combining map3 = affine_map<() —> (

intermediate results (e.g., add) func.func @main() {

%M = memref.alloc() : memref<128x64xf32>
%v = memref.alloc() : memref<64xf32>

w = memref.alloc() : memref<128xf32>

MDH separates the scalar operation linalg.generic
: {
(e.g., mul) from the operations for indexing maps = [#mapl, #map2, #nap3],

combining intermediate reSUItS (eg, add) iterator_types = ["parallel", "reduction"]

} ins(%M,%v:memref<128x64xf32>,memref<64xf32>)
outs (%sw:memref<128xf32>) {

~bb0(%in_1: 32, %in_2: f32, %out: f32):

The additional semantic information & %0 = arith.mulf %in_1, %in_2 : f32

. %1 = arith.addf %out, %0 : 32
their explicit separation allows MDH to achieve higher

linalg.yield %1 : f32
“Performance” & “Expressivity” [1] }
return

[1] "Linalg vs MDH: A Comparison of two MLIR Dialects”, EuroLLVM’24

MatVec in linalg

Note: MDH also describes code generation from its high-level representation 10

https://arirasch.net/assets/files/slides/eurollvm24/slides.pdf

MDH: High-Level Representation

Differences to existing approaches:

MatVec <TETYPEITLKN> .o oyt view<T>(w: (i,k)—(i)) o /\/\DI_‘
md hom<I,K> (¥} (&%)) o MatVec in MDH
inp view<T,T>(M:(i,k)~(i,k) ,v:(i,k)—»(k))

def MatVec (I , K):

MDH allows M = te.placeholder((I , K) , name ='M ' , dtype =' float32’')
multlple combine Operators and has v = te.placeholder((K ,) , hame ='v ' , dtype =' float32’)
(formally defined) semantics for them k = te.reduce_axis ((0,K) , name ='k')

w = te.compute (

(I,),

lambda i : te.sum(M[i,k] * v[k] , axis=k) q
)
return [M, v , w] =

MDH allows using arbitrary MatVec in TVM
combine operators, whereas TVM
is limited to: min, max, sum

MDH'’s stronger support for combine operators

contributes to high “Expressivity”
3 (e.g., for potentially upcoming DL computations)

This is a restriction in the current tensor expression language, because reduction is quite complicated to
be processed in nested form.

There are ongoing effort to enhance low-level IR passes to enable more powerful tensorization, which
hopefully will resolve the issue you raised.

11

https://discuss.tvm.apache.org/t/non-top-level-reductions-in-compute-statements/5693

MDH: High-Level Representation

We offer a Python interface for MDH'’s high-level program representation:

MatVec

<TeTYPE|I,KeN> | _

out view<T>(w:(i,k)—~(i)) o /\A[)L4
md hom<I,K>(*, (#,+)) o

inp view<T,T>(M:(i,k)~(i,k) ,v:(i,k)~(k))

[En MDH Formalis@]

def matvec(T: BasicType, I: int, K: int): P

@mdh ()
def mdh matvec():
return (
out view[T](w = [lambda i,k: (1)]),
md hom[I,K](mul, (cc, pw(scalar plus)
inp view[T,T](M [lambda i,k:
\" [lambda i,k: (k)

The MDH-Python-Interface is designed
to be very close to MDH’s formal representation

12

MDH: High-Level Representation

We offer a Python interface for MDH'’s high-level program representation:

MatVec

<TETYPE|I,KeN> _

out view<T>(w:(i,k)—(i)) o /\A[)L4
md hom<I,K>(*, (#,+)) o

inp view<T,T>(M:(i,k)~(i,k) ,v:(i,k)~(k))

[En MDH Formalis;]

def matvec(T: BasicType, I: int, K: int): P

@mdh ()

def mdh matvec():
@scalar function(
out scalar type
inp scalar type =

)
def mul(out,inp):
out['w'] = inp['M'] * inp['V']

return (
out view[T](w = [lambda i,k: (1)]),
md hom[I,K](mul, (cc, pw(scalar plus)
inp view[T,T](M [lambda 1i,k:
\" [lambda i,k: (k)

We allow custom scalar functions

13

MDH: High-Level

Representation

We offer a Python interface for MDH'’s high-level program representation:

MatVec

<TeTYPE|I,KeN> out view<T>(w:(i,k)r(i)) o

md hom<I,K>(*, (#,+)) o

inp view<T,T>(M:(i,k)~(i,k) ,v:(i,k)~(k))

MOH

[En MDH Formalis;]

@mdh ()

retu

def matvec(T: BasicType, I: int, K: int):

def mdh matvec():

def cc(T: BasicType, D: int, d: int):

@combine operator (
index_set function
scalar type
dimensionality
operating dimension

IndexSetFunction.id,
T,

D,

d

cc_ T D d(res: MDA, lhs: MDA, rhs: MDA):
for i1, ..., d - 1] in I[1, ..., d - 1]:
for ifd + 1, ..., D] in I[d + 1, ..., D]:
for i[d] in P:

res[i[l, ..., d, ... lhs[i[l, ...

for i[d] in Q:

res[i[l, ..., d, ... rhs[i[l, ...

return cc. T D d

rn (
out view[T](w = [lambda i,k: (i)]),
md hom[I,K](mul, (cc, pw(scalar plus))),
inp view[T,T](M [lambda i,k: (i,k)] ,
v [lambda i,k: (k) 1)

We allow custom combine operators

14

MDH: High-Level Representation %

We offer a Python interface for MDH'’s high-level program representation:

MatVec

<TETYPE|I,KeN> _

out view<T>(w:(i,k)—(i)) o /\A[)L4

md hom<I,K>(*, (#,+)) o

inp view<T,T>(M:(i,k)~(i,k) ,v:(i,k)~(k))

[En MDH Formalis;]

def matvec(T: BasicType, I: int, K: int):

@mdh(out(w = Buffer[T])
inp(M = Buffer[T], v = Buffer[T]) ,
combine ops(cc, pw(scalar-plus))

)
def mdh matvec(w, M, v):
for i in range(I):
for k in range(K):
w[i] = M[i, k] * v[k]

MDH also takes as input
straightforward sequential Python code
(instead of DSL programs)

15

MDH: High-Level Representation

We offer an MLIR interface for MDH’s
high-level program representation:

func.func @main() @
{
% memref.alloc() : memref<128x64xf32>

memref.alloc() : memref<64xf32>

mdh.compute "mdh_matvec"

inp_view =
[
[affine_map<(i,k (i
[affine_map<(i,k) —> (k
1,

md_hom =

{

out view<f32>(w:(i,k)—(i)) r\/\[:)L—4

md hom<128,64>(*, (4#,+))
inp wview<f32,f32>(M:(i,k)~(i,k) , v:(i,k)~(k))

[{p MDH Formali§§]

@mul,
["CC", [Ilpwll’@add]]

scalar_func
combine_ops

b
out_view =

[
[affine_map<(i,k) —> (i)> 1

]

¥

{
inp_types = [32, f32 1,
mda_size = [128,64 1,
out_types = [32]

F(%M,%v):(memref<128x64xf32>,memref<64xf32>)
-> memref<128xf32>

return

MLIR interface

for MDH

16

MDH: High-Level Representation
.

%’FTensor low

S o N
| A | |
O PyTorc _,

Implemented by
Jens & Lars Hunloh

Our MLIR interface allows
easy integration of MDH into DL Frameworks

17

MDH: Low-Level Representation ?;(:;c

Goals:

1. Expressing a hardware- & data-optimized de-composition and re-composition of data-parallel
computations, based on an Abstract System Model (ASM)

2. Being straightforwardly transformable to executable program code (e.g., in OpenMP, CUDA,
and OpenCL) — major optimization decisions explicitly expressed in low-level representation

A inpiviewl
> a
| (HM X) » 1 .H_éHM’y)‘ ..
Piel02)ng LT phel0 g o D0 P[0, . .
— w: HM[1] — w: HM[1] — M: HM[1,2] {2} — M: HM[1,2] Assignment of tile
a3 " vi MDD 7 ve EMOL] computations to
& (COR,) - & (COR.) (om0 3 , (CORy) core h1erarcI.1y
1 12; 2 1 2 of target device
p?E[O,S)NO < pge[0716)N0 pfe[078)N() "':,‘.'.':""P p§€[0;16)N0
— w: HM[1] = w: HM[1] — M: HM[1,2] {4} — M: HM[1,2]
an 7 v: HM[1] 7 v: HM[1]
.- /‘/. "—"_,"'::--\‘. A . u
o (L1s®) INCERD eI I (D) L ALY Assignment of tile
1 Py 2 1 2 : .
{10; : computations to
p3e[0,32)n, 7 p3e[0,64), p3e[0,32)n, .. e DRE[0,64) g Treeeereeeieeen P)
- w: L1[1] - w: L1[1] — M: HM[1,2] 6 — M: HM[1,2] memory hlerarcl'hy
5y - v: L1[1] v: L1[1] of target device
8}
Taﬁzﬁ,pé | pips | pips> S, ¢a<$ﬁ,p§ | p1.03 | p1.P3>
f f v
— < (1,2) , (3,4) , (5,6) >
— M: HM[1,2] , v: L1[1]
— w: L1[1]

<
<

Scalar Computation 18

Based on (formally defined) performance-critical parameters, for a structured optimization process:

MDH: Lowering: High Level = Low-Level

No. | Name Range Description
0 | #PRT MDH-LVL — N number of parts
D1 | 0}-ord MDH-LVL <> MDH-LVL de-composition order
D2 | <>|-ass MDH-LVL <> ASM-LVL ASM assignment (de-composition)
D3 | J-mem**®> | MDH-LVL — MR memory regions of input BUFs (ib)
D4 | oy MDH-LVL — [1,...,DiE]s | memory layouts of input BUFs (ib))
S1 | 0f-ord MDH-LVL <> MDH-LVL scalar function order
S2 | < foass MDH-LVL < ASM-LVL ASM assignment (scalar function) € :
$3 | ft-mem*®> | MR memory region of input BUF (ib)
S4]fff’;em [1,....D]s memory layout of input BUF (ib)
S5 | f1-mem<®> | MR memory region of output BUF (ob)

<
S6 Jfﬁf);em [1,...,D%]s memory layout of output BUF (ob)
R1 | 01-ord MDH-LVL <> MDH-LVL re-composition order
R2 | <>1-ass MDH-LVL <> ASM-LVL ASM assignment (re-composition)«
R3 | 1-mem*®® | MDH-LVL — MR memory regions of output BUFs (ob)
R4 af_on?gm MDH-LVL — [1,...,D%]s | memory layouts of output BUFs (ob)

We use our Auto-Tuning Framework (ATF) to automatically determine optimized values of parameters!

Table 1. Tuning parameters of our low-level expressions

(parallelization)

exploiting core hierarchy

S

e S -

exploiting memotry hierarchy

(data movements)

R — R E—

Our parameters

unify & generalize & combine

well-proven optimizations

(and also formalize)

(e.g., tiling, data movements,

and parallelization)

1 We optionally allow (expert) users to incorporate their knowledge into the optimization process via MDH-Based Schedules [CC’23]

19

MDH: Experimental Results

MDH is experimentally evaluated in terms of Performance & Portability & Productivity:

Competitors: Case Studies:

1. Scheduling Approach: 1. Linear Algebra Routines:
- Apache TVM [1] (GPU & CPU) - Matrix Multiplication (MatMul)

2. Polyhedral Compilers: - Matrix-Vector Multiplication (MatVec)

' - PPCG [2] (GPU) 2. Stencil Computations:

- Pluto [3] (CPU) - Jacobi Computation (Jacobi1D)

3. Functional Approach: - Gaussian Convolution (Conv2D)
_ Lift [4]- (GPU & CPU) 3. Quantum Chemistry:

4. Domain-Specific Libraries: - Coupled Cluster (CCSD(T))

- NVIDIA cuBLAS & cuDNN (GPU) 4. Data Mining:
- Intel oneMKL & oneDNN (CPU) - Probabilistic Record Linkage (PRL

. Deep Learning:

- Multi-Channel Convolution (MCC)
- Capsule-Style Convolution (MCC_Capsule)

[1] Chen et al., “TVM: An Automated End-to-End Optimizing Compiler for Deep
Learning”, OSDI’18

[2] Verdoolaege et al., “Polyhedral Parallel Code Generation for CUDA”, TACO’13

[3] Bondhugula et al., “PLuTo: A Practical and Fully Automatic Polyhedral
Program Optimization System”, PLDI’'08

[4] Steuwer et al., “Generating Performance Portable Code using Rewrite Rules”,
ICFP’15

NVIDIA.

20

MDH: Experimental Results

Performance Evaluation: (via runtime comparison)

NVIDIA Ampere GPU

Deep ResNet-50 VGG-16 MobileNet
Lealw1ing Training Inference Training Inference Training i Inference
MCC MatMul MCC MatMul MCC MatMul MCC MatMul MCC MCC
TVM+Ansor 1.00 1.26 1.05 2.22 0.93 1.42 0.88 1.14 0.94 1.00
PPCG 3456.16: 8.26 - 7.89 :1661.14: 7.06 5.77 5.08 2254.67 7.55
PPCG+ATF 3.28 2.58 13.76 5.44 4.26 3.92 9.46 3.73 3.31 10.71
CUuDNN 0.92 - 1.85 - 1.22 - 1.94 - 1.81 2.14
CUBLAS - 1.58 - 2.67 - 0.93 - 1.04 - -
CUBLASEX - 1.47 - 2.56 - 0.92 - 1.02 - -
CUuBLASLt - 1.26 - 1.22 - 0.91 - 1.01 - -
Intel Skylake CPU
Deep ResNet-50 VGG-16 MobileNet
Lear11ing Training Inference Training Inference Training :Inference
MCC MatMul MCC MatMul MCC MatMul MCC MatMul MCC MCC
TVM+Ansor 1.53 1.05 1.14 1.20 1.97 1.14 2.38 1.27 3.01 1.40
Pluto 355.81 i 49.57 | 364.43 | 13.93 : 130.80 : 93.21 | 186.25 | 36.30 152.14 75.37
Pluto+ATF 13.08 19.70 | 170.69 6.57 3.11 6.29 53.61 8.29 3.50 25.41
oneDNN 0.39 - 5.07 - 1.22 - 9.01 - 1.05 4.20
oneMKL - 0.44 - 1.09 - 0.88 - 0.53 - -
oneMKL (JIT) - 6.43 - 8.33 - 27.09 - 9.78 - -

NVIDIA. NVCCVS’VVRTC
MDH speedup over é

* TVM: 0.88x — 2.22x

e PPCG: 2.58x - 13.76x%

e (CuBLAS/cuDNN: 0.91x - 2.67x)

MDH speedup over

e TVM: 1.05 3.01x

* Pluto: 6.29x — 364.43x
® (oneMKL/oneDNN: 0.39x - 9.01x)

Significantly higher speedups for other case studies,
e.q., >170x over TVM on GPU already for straightforward dot products

21

MDH: Experimental Results

Portability Evaluation: (via Pennycook Metric [6])

Pennycook Metric

Deep | | ResNet-50 V6616 .. . MobileNet
Learning _____________ Training Inference Training Inference Training EInference
MCC | MatMul | MCC | MatMul i MCC MatMul i MCC | MatMul & MCC | MCC
MDH+ATF .67 | ©0.76 | ©0.91 = 1.00 . ©0.98 .95 | 0.97 . ©0.68 = ©0.98 . 1.00
TVM+Ansor 0.53 | ©0.62 | .89 = 0.59 | ©0.76 @ 0.81 = 0.70 | ©0.61 | 0.54 | 0.75

The other related approaches achieve lowest portability — of “0.00” — only,
because they are designed for particular architectures and/or application classes only

[6] Pennycook et al., “Implications of a Metric for Performance Portability”, FGCS’19

22

Productivity Evaluation: (via intuitive argumentation)

MDH: Experimental Results

1 | cublasSgemv(/*x ... *x/);

Listing 4. cuBLAS program expressing Matrix-Vector Multiplication (MatVec)

1 [for(int 1 = @ ; i < M ; ++i)
2 for(int k = 0 ; k < K ; ++k)
3 wli]l += M[il[k] * v[k];

Listing 2. PPCG/Pluto program expressing Matrix-Vector Multiplication (MatVec)’

1
2 M
3 %
4
5 k
6 w
7
8
9)
10

def MatVec (I, K):

return [M, v, w]

te.placeholder ((I, K), name='M', dtype='float32"')
te.placeholder ((K,), name='v', dtype='float32')

te.reduce_axis((@, K), name='k")
te.compute(

(I,),
lambda i: te.sum(M[i, k] * v[k], axis=k)

Listing 1. TVM program expressing Matrix-Vector Multiplication (MatVec)

nFun(n => nFun(m =>
fun(matrix: [[floatlnlm => fun(xs: [float]n =>
matrix :>> map(fun(row =>
zip(xs, row) :>> map(x) :>> reduce(+, 0)

)) D))

Gl W= W DN =

Listing 3. Lift program expressing Matrix-Vector Multiplication (MatVec)

TMDH can also take (annotated) sequential code as input [IMPACT’20]

23

MDH: WIP & Future Directions

High-Level Program Transformations

Many promising future directions:
Sparse Computations
Domain-Specific HW

md_hom(g, (+,...,+)) omd_hom(f, (+,...,+))

—» md_hom(gof,(+,...,+))

Fusion Optimizations

We expect MDH to be a promising (formal) foundation for these goals,
e.g., due to the semantic/algebraic information captured in its representation

24

MDH: Summary

e MDH combines three key goals — Performance & Portability & Productivity — as compared
to related approaches

* For this, MDH formally introduces program representations on both:

* high level, for conveniently expressing — in one uniform formalism — the various kinds of
data-parallel computations, agnostic from hardware and optimization details, while still
capturing all information relevant for generating high-performance program code

* low level, which allows uniformly reasoning — in the same formalism — about optimized
(de/re)-compositions of data-parallel computations for the memory and core hierarchies of
contemporary parallel architectures (GPUs, CPUs, etc)

* MDH lowers instances in its high-level representation to device- and data-optimized instances
in its low-level representation, in a formally sound manner, by introducing a generic search
space that is based on performance-critical parameters & auto-tuning

e Our experiments confirm that MDH often achieves higher Performance & Portability &
Productivity than popular state-of-practice approaches, including hand-optimized libraries
provided by vendors

e Many promising future directions, particularly for DL!

25

That was a very quick,
informal dive!

MDH: Summary

1 2 3 4

5 6 7 8 Definition 3 (Multi-Dimensional Homomorphism). Let T™, T%T ¢ TYPE be two arbitrary scalar
9 10 11 12 Lox Dog _
13 14 15 16 types, D € N a natural number, and =}, ..., =yps : MDA-IDX-SETs — MDA-IDX-SETs functions

INP . INP
on MDA index sets. Let further +4 := +<7 IDld> ¢ co<id| T |D]d> denote concatenation (Defini-
tion 1) in dimension d € [1, D]y on D-dimensional MDAs that have scalar type T™".
A function

~IDX- 1 D
h<11,...,IDEMDA IDX-SETs> . TINP[Il e, ID] N TOUT[:>mgﬁ(11) e, :>EBQ(ID)]

19 10 11 12
13 14 15 16

is a Multi-Dimensional Homomorphism (MDH) that has input scalar type T™", output scalar type

1 D . .
T, dimensionality D, and index set functions =>\os, . . . , =wos, iff for each d € [1, D]y, there exists

d MDA | -OUT
a combine operator &4 € CO<=wonT" IP14> (Definition 2), such that for any concatenated input

MDA a;+4 a; in dimension d, the homomorphic property is satisfied:
h(aHg Qg) = h(al) @d h(az)

INP —-OUT d vpA
We denote the type of MDHs concisely as MDH<T 7 [21(Swn)actiong>,

Definition 5 (Buffer). Let T € TYPE be an arbitrary scalar type, D € N, a natural number’, and
N :=(Ni,..., Np) e N a sequence of natural numbers.

A Buffer (BUF) b that has dimensionality D, size N, and scalar type T is a function with the
following signature:

b:[0,N1)n, X...x [0,Np)y, > Tu{L}

Here, | denotes the undefined value. We refer to [0, Ny), x...x [0, Np)n, = Tu{L} as the type of
BUF b, which we also denote as TV *ND 'and we refer to set BUF-IDX-SETs := { [0, N)y, | N € N}
as BUF index sets. Analogously to Notation 1, we write b[iy,. .., ip | instead of b(iy, .. .,ip) to avoid
a too heavy usage of parentheses.

Definition 2 (Combine Operator). Let MDA-IDX-SETs x MDA-IDX-SETs := { (P,Q) € MDA-IDX-SETs
XMDA-IDX-SETs | Pn Q = @& } denote the set of all pairs of MDA index sets that are disjoint. Let
further =} : MDA-IDX-SETs — MDA-IDX-SETs be a function on MDA index sets, T € TYPE a scalar
type, D € N an MDA dimensionality, and d € [1, D] an MDA dimension.

We refer to any binary function & of type (parameters in angle brackets are type parameters)

®<(Il,...,Id_l,IdH,...,ID)eMDA—IDX—SETsD_l , (P,Q)eMDA-IDX-SETs X MDA-IDX-SETs> |

1 2 3 9 10 11 12
h([s 6 7 h([13 14 15 16]) T[L..... =wpa(P) oo Ip] % T[L.... =ypR(Q) .. Ip] (>130 pages)
DO : S T[L,...,=>NPwQ),...,Ip]
1 2 3 4 ‘ ‘ 1
h(5 6 7 8) d
193 ig ié ié as combine operator that has index set function =>\os, scalar type T, dimensionality D, and operating

MDA
dimension d. We denote combine operator’s type concisely as CO=to IT|D]d>

Fig. 10. MDH property recursively applied to a two-dimensional example computation

All concepts are fully formally defined in the MDH paper

(arXiv version)

20

https://arxiv.org/abs/2405.05118

Code Optimization via ATF

Overview Getting Started Code Examples Publications Citations Contact

ﬁ Auto-Tuning Framework (ATF)

Efficient Auto-Tuning of Parallel Programs with

Overview

The Auto-Tuning Framework (ATF) is a general-purpose auto-tuning approach: given a program that is implemented as
generic in performance-critical program parameters (a.k.a. tuning parameters), such as sizes of tiles and numbers of
threads, ATF fully automatically determines a hardware- and data-optimized configuration of such parameters.

Key Feature of ATF

A key feature of ATF is its support for Tuning Parameter Constraints. Parameter constraints allow auto-tuning programs
whose tuning parameters have so-called interdependencies among them, e.g., the value of one tuning parameter has to
evenly divide the value of another tuning parameter.

ATF's support for parameter constraints is important: modern parallel programs target novel parallel architectures, and such
architectures typically have deep memory and core hierarchies thus requiring constraints on tuning parameters, e.g., the
value of a tile size tuning parameter on an upper memory layer has to be a multiple of a tile size value on a lower memory
layer.

For such parameters, ATF introduces novel concepts for Generating & Storing & Exploring the search spaces of constrained
tuning parameters, thereby contributing to a substantially more efficient overall auto-tuning process for such parameters, as
confirmed in our Experiments.

Generality of ATF

For wide applicability, ATF is designed as generic in:

1. The target program’s Programming Language, e.g., C/C++, CUDA, OpenMP, or OpenCL. ATF offers pre-implemented
cost functions for conveniently auto-tuning C/C++ programs, as well as CUDA and OpenCL kernels which require host
code for their execution which is automatically generated and executed by ATF's pre-implemented CUDA and OpenCL
cost functions. ATF also offers a pre-implemented generic cost function that can be used for conveniently auto-tuning
programs in any other programming language different from C/C++, CUDA, and OpenCL.

ACM TACO 2021

https://atf-tuner.org

Efficient Auto-Tuning of Parallel Programs with
Interdependent Tuning Parameters via Auto-Tuning
Framework (ATF)

ARI RASCH and RICHARD SCHULZE, University of Muenster, Germany
MICHEL STEUWER, University of Edinburgh, United Kingdom
SERGEI GORLATCH, University of Muenster, Germany

Auto-tuning is a popular approach to program optimization: it automatically finds good configurations of a
program’s so-called tuning parameters whose values are crucial for achieving high performance for a par-
ticular parallel architecture and characteristics of input/output data. We present three new contributions of
the Auto-Tuning Framework (ATF), which enable a key advantage in general-purpose auto-tuning: efficiently
optimizing programs whose tuning parameters have interdependencies among them. We make the following
contributions to the three main phases of general-purpose auto-tuning: (1) ATF generates the search space
of interdependent tuning parameters with high performance by efficiently exploiting parameter constraints;
(2) ATF stores such search spaces efficiently in memory, based on a novel chain-of-trees search space structure;
(3) ATF explores these search spaces faster, by employing a multi-dimensional search strategy on its chain-
of-trees search space representation. Our experiments demonstrate that, compared to the state-of-the-art,
general-purpose auto-tuning frameworks, ATF substantially improves generating, storing, and exploring the
search space of interdependent tuning parameters, thereby enabling an efficient overall auto-tuning process
for important applications from popular domains, including stencil computations, linear algebra routines,
quantum chemistry computations, and data mining algorithms.

CCS Concepts: « General and reference — Performance; - Computer systems organization — Paral-
lel architectures; « Software and its engineering — Parallel programming languages;

Additional Key Words and Phrases: Auto-tuning, parallel programs, interdependent tuning parameters

ACM Reference format:

Ari Rasch, Richard Schulze, Michel Steuwer, and Sergei Gorlatch. 2021. Efficient Auto-Tuning of Parallel
Programs with Interdependent Tuning Parameters via Auto-Tuning Framework (ATF). ACM Trans. Archit.
Code Optim. 18, 1, Article 1 (January 2021), 26 pages.

https://doi.org/10.1145/3427093

This is a new paper, not an extension of a conference paper.

Authors’ addresses: A. Rasch, R. Schulze, and S. Gorlatch, University of Muenster, Muenster, Germany; emails:
{a.rasch, r.schulze, gorlatch}@uni-muenster.de; M. Steuwer, University of Edinburgh, Edinburgh, United Kingdom; email:
michel. steuwer@glasgow.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1544-3566/2021/01-ART1

27

Goal of ATF

Advantage of Auto-Tuning Framework (ATF) over state-of-the-art general-purpose AT approaches:

ATF finds values of performance-critical parameters with
interdependencies among them

via optimized processes to

generating & storing & exploring

the spaces of interdependent parameters

For this, ATF introduces:

SP :=[(1,1) | (2,1) | (2,2) | .]
tuner.addParameter(“tp_1", T1); traditional search space
tuner.addParameter(“tp_2", T2); Defined on: ATF
. efined on:

¢= search space (traditional) CoT search space [1]
tuner.addConstraint(vs. parameters (ATF)
[1(T1 tp_1, T2 tp_2, ..) —> bool

traditional constraints @ Structure is:
verbose & 1D (traditional)
vs. compact & nD (ATF)

tuner.addParameter(“tp_1", R1, []1(T1 tp_1) —> bool { /* .. x/ });
tuner.addParameter(“tp_2", R2, [1(T2 tp_2) —> bool { /x .. x/ });

ATF
parameter constraints [1]

[1] “Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via Auto-Tuning Framework (ATF)”, TACO’21 8

ATF: User Interfaces

ATF’s Python-based user interface!’:

Name

Range

| In a nutsheil |

Input Size
N = 1000

Step 1l: Generate the Search Space

(either interval or set)l

—

ATF Website Constraint

(may contain tuning parameters)

Arbitrary & pre-implemented cost functions

Various pre-implemented

ATF’'s Python-based user interface was
presented at CC: Sat, 1. March, 10:30am

Schulze, Gorlatch, Rasch, “pyATE: Constraint-Based Auto-Tuning in Python”, CC’'25

Search Techniques & Abort Cond/z‘/ok

TATF also offers a GPL-based interface for (online-tuning) C++ programs,
as well as a DSL-based interface (offline tuning)

WPT = T g"WPT' ’
—ypInterval(1,N) ’

—lambda WPT: N % WPT == 0)
LS = TP('LS'
Interval(1,N)
lambda WPT,LS: (N/WPT) % LS ==
Step 2:
saxpy code = # ...

Implement a Cost Function

.tune(cf, Evaluations(50)

N = np.int32(N)

a = np.float32(np.random.random())

X = np.random.rand(N).astype(np.float32)

y = np.random.rand(N).astype(np.float32)

I:;‘; opencl.CostFunction(saxpy_ code)
.platform id(0) \
.device id(0) \
.kernel args(N, a,x,y) \
.glb size(lambda WPT,LS: N/WPT) \
.1lcl size(lambda LS: LS)

Step 3: EXplore the Search Space

config = Tune .tuning parameters(WPT,LS) \

.search technique(AUCBandit()) \

)

29

https://dl.acm.org/doi/10.1145/3708493.3712682

ATF: Summary

ATF efficiently handles tuning parameters with interdependencies among them:

ATF introduces novel concepts to
Generating & Storing & Exploring

the search spaces of interdependent parameters, based on its novel
constraint design and search space representation

Further ATF features (not presented on slides for brevity):

« ATF has a DSL-based user interface that is arguably simpler to use and more expressive than
existing auto-tuners (including: OpenTuner & CLTune)

» ATF offers different kinds of search techniques and abort conditions (extensible)

« ATF offers a DSL-based user interface (offline tuning), as well as GPL-based interfaces (online

auto-tuning):

PYATF CppATF

github.com/atf-tuner/pyATF github.com/atf-tuner/cppATF

... (future work)

m— " —niversitit
Munster

Questions?

https://arirasch.net
a.rasch@uni-muenster.de

https://mdh-lang.org https://atf-tuner.org https://richardschulze.net iy

r.schulze@uni-muenster.de

Code Code " 7
Generation Optimization Richard
Schulze

31

mailto:r.schulze@uni-muenster.de
mailto:a.rasch@uni-muenster.de

