= " = Universitit C4ML 2026

Munster

7th Workshop on Compilers for Machine Learning

Systematic Code Generation
for ML Computations
based on Multi-Dimensional Homomorphisms

Ari Rasch, Richard Schulze
University of MUnster, Germany

Goal of this Talk

Observation:

State-of-the-art ML compilers/libraries
struggle with fully automatically achieving high performance
for an extensible set of target architectures

Examples:
%etvm ©PyTorch
NVIDIA. Inductor
CUTLASS
Q@ 1 o=
oneAPI aniA
OpenXLA oneMKL/oneDNN cuBLAS/cuDNN

We present a systematic ML code generation process that fully automatically
achieves high performance across an extensible set of architectures

Overview

End-to-end ML Code-Generation approach:

MDH Based [1] e e _
/\ | ; Transition: : Straightforward :
"""" Based on Functional ™ Imperative (no_optimizations required) : | CUDA
Auto-Tuning [2]
.............. EERR AT CL - CL j
H v o~ CUDA - CUDA
HL - LL LL-CL ' CL-{...}
User —| HL-IR > LL-IR > CL-IR > | OpenMP
: OpenMP - OpenMP
; High-Level IR ' Low-Level IR : Code-Level IR Open CL
é- Expresses a wide range of data- : ° Expresses (de/re)-compositions of : 0 Represents imperative-style
: parallel computations : : data-parallel computations : : program code for data-parallel : 1
1 Agnostic from hardware and ::e Data Movement & Parallelization : computations : o CL-O CL
: optimization details ;1 Optimizations expressed, by : : ¢ Code-level optimizations simple to: pen = vpen
! Captures high-level information - assigning (de/re)-composed : : express: CL-IR specifically limited : .
relevant for generating high computations to memory and core : : and tailored to expressing data- : :
performing code hierarchy of target architecture . : parallel computations .

Built around three core IRs with

automated transformations between them

[1] Rasch, “(De/Re)-Composition of Data-Parallel Computations via Multi-Dimensional Homomorphisms”, TOPLAS’24

[2] Rasch, Schulze, Steuwer, Gorlatch, “Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via 3
Auto-Tuning Framework (ATF)”, TACO’21

Overview

End-to-end ML Code-Generation approach:

MDH Based [1] e
A | Transition: Straightforward :
. Basedon Funstional 2 Imperative :(no optimizations requred) : | CUDA
Auto-Tuning [2] :
.............. e B CL - CL K
H H CUDA - CUDA
HL- LL LL-CL
User HL-IR LL-IR OpenMP
|4

High-Level IR Low-Level IR

é- Expresses a wide range of data- xpresses (de/re)-c&npositions of :
: parallel computations

‘e Represents imperative-style
:e Agnostic from hardware and

: optimization details

: e Captures high-level information
: relevant for generating high

: performing code

Agenda Today
(Basic ldea & Motivation)

Built around three core IRs with

automated transformations between them

[1] Rasch, “(De/Re)-Composition of Data-Parallel Computations via Multi-Dimensional Homomorphisms”, TOPLAS’24

[2] Rasch, Schulze, Steuwer, Gorlatch, “Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via
Auto-Tuning Framework (ATF)”, TACO’21

= OpenCL

\ OpenMP - OpenMP

i
OpenCL - OpenCL

Overview

End-to-end ML Code-Generation approach:

MDH Based [T] e e
A | Transition: Straightforward :
. Basedon Funstional 2 Imperative :(no optimizations requred) : | CUDA
... Auto-Tuning 2] : : é K
5 5 E CUDA - CUDA
HL - LL ' /'
User —{HL-IR > | OpenMP
")
: OpenMP - OpenMP
: Hiqh-LeveI IR 0pen c L
:® Expresses a wide range of data-
: parallel computations _f
- Agnostic from hardware and
optimization details Agenda Today OpenCL > OpenCL
: e Captures high-level information S

. relevant for generating high
: performing code

(Basic ldea & Motivation)

Built around three core IRs with

automated transformations between them

[1] Rasch, “(De/Re)-Composition of Data-Parallel Computations via Multi-Dimensional Homomorphisms”, TOPLAS’24

[2] Rasch, Schulze, Steuwer, Gorlatch, “Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via
Auto-Tuning Framework (ATF)”, TACO’21

Overview

End-to-end ML Code-Generation approach:

MDH Based [1] e e _
/\ | ; Transition: : Straightforward :
"""" Based on Functional ™ Imperative (no_optimizations required) : | CUDA
Auto-Tuning [2]
.............. EERR AT CL - CL j
H v o~ CUDA - CUDA
HL - LL LL-CL ' CL-{...}
User HL-IR » LL-IR > CL-IR > | OpenMP
: OpenMP - OpenMP
; High-Level IR ' Low-Level IR : Code-Level IR Open CL
é- Expresses a wide range of data- : 0 Expresses (de/re)-compositions of : 0 Represents imperative-style
: parallel computations : : data-parallel computations : : program code for data-parallel : 1
1 Agnostic from hardware and ::e Data Movement & Parallelization : computations : o CL-O CL
: optimization details ;1 Optimizations expressed, by : : ¢ Code-level optimizations simple to: pen = vpen
! Captures high-level information - assigning (de/re)-composed : : express: CL-IR specifically limited : .
relevant for generating high computations to memory and core : : and tailored to expressing data- : :
performing code hierarchy of target architecture . : parallel computations .

Built around three core IRs with

automated transformations between them

[1] Rasch, “(De/Re)-Composition of Data-Parallel Computations via Multi-Dimensional Homomorphisms”, TOPLAS’24

[2] Rasch, Schulze, Steuwer, Gorlatch, “Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via 6
Auto-Tuning Framework (ATF)”, TACO’21

HL-IR: High-Level IR

Example: MatVec expressed in HL-IR (using its Python DSL representation)

def matvec(T: BasicType, I: int, K: int): Pj
@mdh () §] |
H def mdh matvec(): o
return (
H out view[T](w = [lambda 1i,k: (1)]), 7
P md hom[I,K](mul, (cc, pw(scalar plus))),
inp view[T,T](M = [lambda 1i,k: (i,k)] ,
v = [lambda 1i,k: (k) 1))1
- O OO 1

High-Level Representation of MatVec

What is happening here:

The HL-IR uniformly expresses
ML computations,
abstracting away low-level details
while preserving high-level
algebraic information

e 1np_Vvilew captures the accesses to input data

« md_hom expresses the core algebraic computation

 out_Vview captures the accesses to output data

HL-IR: ML Examples

md_hom || f | ®1,...,®p
MatMul<F,F> * H, H, +
MatMul<F,T> * +H, -+
MatMul<T,F> * +H, H, +
MatMul<T,T> * +H-, H, +
BatchMatMul<F,F> * H,,H+
BiasAddGrad<NHWC> id +, 4+, +, H
BiasAddGrad<NCHW> id +, H,+, +
CheckNumerics (z) — (x == NaN) Y
Sum<0><F> id +,H,H
Sum<0><T> id +,+H, .
Sum<1><F> id H, 4, Hy e, H
Sum<0, 1><F> id +,+,+H, ..., H
Prod<0><F> id * H,H, ., H
A11<0><F> id &&, +H,H, ..., H

Linear Algebra, Contractions, ..
(Computation Specification)

md_hom I f | ®1,...,®p
Fill id Hyo, H
ExpandDims<0> id Hy e, H
ExpandDims<1> id Hy o, H
ExpandDims<0, 1> id H, .., H
Transpose<o> id +Hy oo, H
Exp exp Hy o,
Mul * H, .o, H
BiasAdd<NHWC> + +H, A S H
BiasAdd<NCHW> + +H, -, S H
Range (s,d,i) — (s +dx1) +H

Point-Wise, Re-Shaping, ...
(Computation Specification)

inp_view out_view

Views I | I [0)

MatMul<F,F> (4,7,k) — (i, k) (4,5, k) — (k,5) (4,7,k) — (3,7)

MatMul<F,T> (1,7,k) — (i, k) (1,7,k) — (4,k) (4,7, k) — (4, 7)

MatMul<T,F> (i,7,k) — (k, 1) (4,7, k) — (k,5) (1,7,k) — (3,7)

MatMul<T,T> (1,7, k) — (k1) (1,7, k) — (4,k) (4,7, k) — (4, 7)

BatchMatMul<F,F> (bl,...,i,j,k)H(bl, ,i,ki) (bl,...,i,j,)’—)(bl, ,k,j) (bl,...,i,j,k‘)’—)(bl, ,Z,])

BiasAddGrad<NHWC> || (n,h,w,c) — (n,h,w,c) s (n,h,w,c) — (n,h,w)

BiasAddGrad<NCHW> || (n,c, h,w) — (n,c, h,w) s (n, e, hyw) — (n, h,w)

CheckNumerics (i1y...yip) — (i1, ..,iD) v (i1,...,ip) — ()

Sum<0><F> (i1,---,ip) — (i1,-.-,9D) / (t1,...,ip) = (i2,...,ip)

Sum<0><T> (i17 B 7iD) = (i17 . 7iD) / (ila 7iD) = (07i27 . 7iD)

Sum<1><F> (i1y...yip) — (i1, ..,iD) / (i1y..-yip) — (i1,13,...,iD)

Sum<0, 1><F> (il,. .,iD)'—)<i1, .,iD) / (’il, ,iD)'—>(’i3,.. ,iD)

Prod<0><F> (i1,y...,tp) — (i1,...,ip) v (i1,.--,ip) — (i2,...,ip)

A11<0><F> (ilv aZD) = (ilv aiD) 7 (ih aZD) = (i27)iD)

Linear Algebra, Contractions, ... (Data Specification)
inp_view out_view

Views I | I [0)

Fill (i1,...,ip) = () / (i1,-.-,ip) = (i1,..-,iD)
ExpandDims<0> (i1,...,ip) — (i1, ..,iD) v (i1,...,ip) — (0,i1,42,...,iD)
ExpandDims<0> (i1,.--,ip) ¥ (i1,...,ip) / (i1,...,ip) = (i1,0,42,...,ip)
ExpandDims<0,1> || (i1,...,ip) = (i1,...,iD) v (i1,...,ip) = (0,0,41,...,ip)
Transpose<o> (i1,...,ip) — (o(i1),...,0(ip)) v (i1,.--,ip) = (i1,...,ip)
EXP (217 7ZD) = (lla-- 77/D) 7/ (7/17 7ZD) — (7:17 7lD)

(217 7iD)'_)(Zlﬂ 7ZD) (Z'lv 71D>'_>(7“1772D) (217 77/D)'_> (7:17 7ZD>

Mul (i1,..-,ip) = (i1,...,iD) (i1,...,ip) = (i1, ig—1,%k+1,---,%D) | (i1,...,ip) = (i1,...,iD)
BiasAdd<NHWC> (n, h,w,c) = (n,h,w,c) (n, h,w,c) — (c) (n, h,w,c) = (n,h,w,c)
BiasAdd<NCHW> (n, ¢, h,w) = (n,c, h,w) (n, e, hy,w) — (c) (n,c,h,w) — (n,c, h,w)
Range (1) = () (1) = () (i) — (i)

Point-Wise, Re-Shaping, ...

(Data Specification)

Important ML kernels can be expressed uniformly in HL-IR

Overview

End-to-end ML Code-Generation approach:

MDH Based [1] e e _
/\ | ; Transition: : Straightforward :
"""" Based on Functional ™ Imperative (no_optimizations required) : | CUDA
Auto-Tuning [2]
.............. EERR AT CL - CL j
H v o~ CUDA - CUDA
HL - LL LL-CL ' CL-{...}
User —| HL-IR LL-IR > CL-IR > | OpenMP
: OpenMP - OpenMP
; High-Level IR ' Low-Level IR : Code-Level IR Open CL
é- Expresses a wide range of data- : 0 Expresses (de/re)-compositions of : 0 Represents imperative-style
: parallel computations : : data-parallel computations : : program code for data-parallel : 1
1 Agnostic from hardware and ::e Data Movement & Parallelization : computations : o CL-O CL
: optimization details ;1 Optimizations expressed, by : : ¢ Code-level optimizations simple to: pen = vpen
! Captures high-level information - assigning (de/re)-composed : : express: CL-IR specifically limited : .
relevant for generating high computations to memory and core : : and tailored to expressing data- : :
performing code hierarchy of target architecture . : parallel computations .

Built around three core IRs with

automated transformations between them

[1] Rasch, “(De/Re)-Composition of Data-Parallel Computations via Multi-Dimensional Homomorphisms”, TOPLAS’24

[2] Rasch, Schulze, Steuwer, Gorlatch, “Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via 9
Auto-Tuning Framework (ATF)”, TACO’21

LL-IR: Low-Level IR

Goal: Expressing optimized de-composition and re-composition of ML computations

p16[072)N0
— w: HM[1]

1
DU Py
_>

<>BiCDR,X)

p%€[078)N0
— w: HM[1]

13 -

Multi-Layered,
Multi-Dimensional

Iteration Space Tiling

€[074)N0
w: HM[1]

4

.

.
.

»

(COR,y)

(
2

® +

— w: HM[1]

4

pr[O,S)NO e
— M: HM[1,2] {4} — M: HM[1,2]

inp_ view !
—

e pée[O,4)N0
— M: HM[1,2] {2} — M: HM[1,2]
v: HM[1] © v: HM[1]
T3} (oom
+|-§ »Y)
et P%E[Oa 16)N0

COR,x) .

AL -

v: HM[1]

v: HM[1]

@
p3€[0,32)n,
- w: L1[1]

@L1,x)

L1
@,

p§€[0,64)N0
— w: L1[1]

)

(L1,x)
RS

p?€[0732)N0
— M: HM[1,2]

gty

&

_____ ceeeeeed pge[0,64)N0

A
(L1,y) :

Re-Composition

,
As

171 2 2, 3 3
<pi,p3 | P1,P3 | P1,P3>

— < (1,2)

(8’

dg

(3,4)

v: L1[1]

1 1 2 2 3 3.7
<p1,p3 | P1,P5 | P1,P5>

f

b

(5,6)

6

— M: HM[1,2]
v: L1[1]

A____.

T

v
>

— < (HM,x), (HM,y) , (COR,x),(COR,x) , (Li,x),(L1i,y) >
— M: HM[1,2] , v: L1[1]
— w: L1[1]

&
<

De-Composition

Scalar Computation

Expresses parallelization and data-movement optimizations

Assignment of tile
computations to

core hierarchy
of target device

Assignment of tile
computations to

memory hierarchy
of target device

10

Overview

End-to-end ML Code-Generation approach:

MDH Based [1] e e _
E Transition: : Straightforward :
"""" Based on Functional_ = Imperative (no_optimizations required) : | CUDA
Auto-Tuning [2] : : T
v CUDA - CUDA
HL - LL LL-CL
User —|HL-IR » LL-IR > | OpenMP
A 4
: : OpenMP - OpenMP
: High-Level IR : Low-Level IR Lo Code-Level IR OpenCL
é- Expresses a wide range of data- : 0 Expresses (de/re)-compositions of : 0 Represents imperative-style
: parallel computations : : data-parallel computations : : program code for data-parallel : 1
é- Agnostic from hardware and : - Data Movement & Parallelization ; computations : o CL-O cL
: optimization details . Optimizations expressed, by : :© Code-level optimizations simple to: pen = Upen
:e Captures high-level information assigning (de/re)-composed : 1 express: CL-IR specifically limited : .
relevant for generating high computations to memory and core : : and tailored to expressing data- : :
performing code hierarchy of target architecture : parallel computations :

Built around three core IRs with

automated transformations between them

[1] Rasch, “(De/Re)-Composition of Data-Parallel Computations via Multi-Dimensional Homomorphisms”, TOPLAS’24

[2] Rasch, Schulze, Steuwer, Gorlatch, “Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via 11
Auto-Tuning Framework (ATF)”, TACO’21

CL-IR: Code-Level IR

General Structure — (deliberately) limited to expressing ML computations:

e e e e
AL = OO0 X ~N NN RN -

J—
9}

—_
~N

NN NN = —
A W= OO

D N
A\

LW W N NN
—_ O O 0

W
[\

: // ... (further buffers)
// input buffers

B1 1d[...,p.1 d,...][N_TIB 1

in MEM IB 1 d 1]

IB 2 1d[...,p. 1 d,...][N__IB 2
in MEM IB 1 d 2]

// output buffers
oB_.1_ 1 d[...,p_ 1 d,...][N_OB_1
in MEM OB 1_d 1]

oB_2_ 1 d[...,p_1 d,...]1[N_OB_2_

in MEM OB 1 d 2]

: // ... (further buffers)

. // ... (outer computations)

// iterations
[for | par for<ASS 1 d>](p_l.d <
{
// de-composition
de_comp_op<l,d>: IB_1_ 1 d,...

// ... (inner computations)

// re-composition
re_comp_op<l,d>: OB_1_ 1 d,...
Yy // p_1_d

" // ... (outer computations)

_1,N_1IB 2 2,
LYT_IB_l_d_2]
_1,N_OB_1_2,...]

\De—Composition Buffers

1,N_IB 1 2,...]

LYT_IB_l_d_l]

Re- Comp051t10n Buffers

IYT OB 1 d 1] Loop Nest

1,N_OB 2 2,...]
LYT OB 1 d 2]

Each CL-IR always consists of

the same (simple) structure:

De-Composition
Operator

P_1 d)

— IB_1__1'_d’, ...

Scalar Computation

‘_7
«~— OB_1_ 1" _d’,... \
Re-Composition
Operator

Expresses ML computations as
minimalistic, structured, imperative-style code

1. De-Composition Buffers
2. Re-Composition Buffers

3. Loop Nest (canonical):

— De-Composition OPs

— Re-Composition OPs

4. Scalar Computation

12

Overview

End-to-end ML Code-Generation approach:

Based on :
Auto-Tuning [2] :

MDH Based [1] PP _
| Transition: ; Straightforward
""""""" Functional ™ Imperative :(no_ optimizations _required) : CUDA
.............. CL - CL
v P CUDA - CUDA

High-Level IR

é- Expresses a wide range of data-
parallel computations

1 Agnostic from hardware and
optimization details

- ® Captures high-level information
relevant for generating high
performing code

- Data Movement & Parallelization

HL - LL LL - CL ' CL - {...}
» LL-IR » CL-IR » | OpenMP

|
OpenMP - OpenMP

Low-Level IR Code-Level IR

t i cle-Leve é OpenCL
: - ® Expresses (de/re)-compositions of : . Represents imperative-style :

data-parallel computations : : program code for data-parallel : .

computations
OpenCL - OpenCL

Optimizations expressed, by : : o Code-level optimizations simple toé

assigning (de/re)-composed : express: CL-IR specifically limited -
computations to memory and core : : and tailored to expressing data- :
hierarchy of target architecture : : parallel computations

Built around three core IRs with

automated transformations between them

[1] Rasch, “(De/Re)-Composition of Data-Parallel Computations via Multi-Dimensional Homomorphisms”, TOPLAS’24

[2] Rasch, Schulze, Steuwer, Gorlatch, “Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via 13
Auto-Tuning Framework (ATF)”, TACO’21

{...}-IR: Backend IRs

We define minimalistic |Rs for target models, limited to required features:

L2 A ,{/Zf‘ TM
NVIDIA QM OpenCL Currently supported
CUDA

Future Targets

14

Overview

End-to-end ML Code-Generation approach:

Based on :
Auto-Tuning [2] :

High-Level IR

é- Expresses a wide range of data-
parallel computations

MDH Based [1] e _
| Transition: ; Straightforward
""""""" ; Functional = Imperative : :(no optimizations required) : CUDA
.............. CL - CL K
i o~ CUDA - CUDA
HL - LL LL-CL ' CL-{...}
> LL-IR » CL-IR > | OpenMP
A A _f
OpenMP - OpenMP
: Low-Level IR L Code-Level IR OpenCL
0 Expresses (de/re)-compositions of : 0 Represents imperative-style
- data-parallel computations : program code for data-parallel _f

1 Agnostic from hardware and
optimization details

- ® Captures high-level information
relevant for generating high
performing code

- Data Movement & Parallelization

computations

OpenCL - OpenCL

Optimizations expressed, by : : o Code-level optimizations simple toé

assigning (de/re)-composed : express: CL-IR specifically limited - .
computations to memory and core : : and tailored to expressing data- : :
hierarchy of target architecture : : parallel computations :

Built around three core IRs with

automated transformations between them

[1] Rasch, “(De/Re)-Composition of Data-Parallel Computations via Multi-Dimensional Homomorphisms”, TOPLAS’24

[2] Rasch, Schulze, Steuwer, Gorlatch, “Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via 15
Auto-Tuning Framework (ATF)”, TACO’21

Transformation: HL-IR — LL-IR

Based on MDH [1] and ATF [2]:

No. | Name Range Description

0 | #PRT MDH-LVL - N number of parts

D1 | 0}-ord MDH-LVL <> MDH-LVL de-composition order

D2 | <>|-ass MDH-LVL <> ASM-LVL ASM assignment (de-composition)

D3 | |-mem<®> | MDH-LVL — MR memory regions of input BUFs (ib)
D4 af_irfgm MDH-LVL — [1,...,Dil]s | memory layouts of input BUFs (ib)
S1 | 0f-ord MDH-LVL <> MDH-LVL scalar function order

S2 | “<>f-ass MDH-LVL <> ASM-LVL ASM assignment (scalar function)
S3 fl—memqb> MR memory region of input BUF (ib)
S4 ijf’r:em [1,...,Dif]s memory layout of input BUF (ib)
S5 | f1-mem<®®> | MR memory region of output BUF (ob)
S6 Jf?f’;em [1,....D%]s memory layout of output BUF (ob)
R1 | 01-ord MDH-LVL <> MDH-LVL re-composition order

R2 | <>1-ass MDH-LVL <> ASM-LVL ASM assignment (re-composition)

R3 | t-mem°® | MDH-LVL — MR memory regions of output BUFs (ob)
R4 | 059 MDH-LVL — [1,...,D%®]s | memory layouts of output BUFs (ob)

MDH-Based Tuning Parameters [1]

[,€(0,0.25], NUM_CHILD
=> k;=1, s;=0

0

1,€(0.33,0.66], NUM_CHILD(®

=> k,=2, 5,=0

l5e(0.5,1], NUM_CHILD
=> k3=2, 53=Q

@,

=4

®)

)=

=2

I4€(O, 1], NUM_CHILD(®’@’@)=].

=> ky=1, s,=0

ATF-Based Search Space Exploration [2]

[1] Rasch, “(De/Re)-Composition of Data-Parallel Computations via Multi-Dimensional Homomorphisms”, TOPLAS’24

[2] Rasch, Schulze, Steuwer, Gorlatch, “Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning
Parameters via Auto-Tuning Framework (ATF)”, TACO’21

3

Formally defined transformation driven

by performance-critical parameters [1]
and auto-tuning [2]

16

Overview

End-to-end ML Code-Generation approach:

Based on :
Auto-Tuning [2] :

MDH Based [1] e PP _
| Transition: ; Straightforward
""""""" Functional ~ Imperative o optimizations required) i | CUDA
.............. CL = CL 4
CUDA - CUDA

High-Level IR

é- Expresses a wide range of data-
parallel computations

1 Agnostic from hardware and
optimization details

- ® Captures high-level information
relevant for generating high
performing code

: 5 o E
HL - LL ' CL - {...}
» LL-IR CL-IR » | OpenMP

- Data Movement & Parallelization

¢t

A A
OpenMP - OpenMP
¥ Low-Level IR S Code-Level IR OpenCL
0 Expresses (de/re)-compositions of : 0 Represents imperative-style
- data-parallel computations : : program code for data-parallel : 1

computations

OpenCL - OpenCL

Optimizations expressed, by : : o Code-level optimizations simple toé

assigning (de/re)-composed : express: CL-IR specifically limited - .
computations to memory and core : : and tailored to expressing data- : :
hierarchy of target architecture : : parallel computations :

Built around three core IRs with

automated transformations between them

[1] Rasch, “(De/Re)-Composition of Data-Parallel Computations via Multi-Dimensional Homomorphisms”, TOPLAS’24

[2] Rasch, Schulze, Steuwer, Gorlatch, “Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via 17
Auto-Tuning Framework (ATF)”, TACO’21

Transformation: LL-IR — CL-IR
Shift from functional to imperative semantics: o

kernel matvec(w_0_0, M_0_0,v_0_0) »
{ De—Composition
De-Compositions: |
v
- upper part of Ioops M 1 _2(2][I,K] in HM[L,2] pmy
. _ v_1_2[2][K] in HM[1] | 16[024) g FL 2
- copy tiles of input data wl12(2)[1) in HM[1) Pt v
v
Scalar Comp.:
. V,<p1.py P1.P3 | PTP5>
- middle part of loops for(o1 2 < 4) Vg
de _comp op<1l,2>: M 1 2, v.1. 2 — M 2_1, v_2 1< o o y Scalar
. Tt <P1:P2 | P1:P2 1,P2>
- compute scalar function a Comp.
— M: HM[1,2] , v: L1[1] , w: L1[1] !
w £ = f((M_f,v_f)) ,

Re-Compositions:
- lower part of |OOpS }rjf;rjigpﬂ,zx SR L
- combine computed

intermediate results) .
(:l.-lF‘) - ’ Re—Composition

out view 1)
w < a =

CL-IR instance generated as sound by construction

(humerous intermediate buffers, over-approximated buffer sizes, ...) 8

Overview

End-to-end ML Code-Generation approach:

MDH Based [1] e, e _
I Transition: : Straightforward
"""" Basedon Funstional 2 Imperative :(no optimizations requred) : | CUDA
Auto-Tuning [2] :
........................... ool K,
v — CUDA - CUDA
HL - LL LL-CL ' CL-{...}
User —| HL-IR » LL-IR > CL-IR > | OpenMP
A A A _f
: OpenMP - OpenMP
: High-Level IR ¥ Low-Level IR L Code-Level IR OpenCL
é- Expresses a wide range of data- : 0 Expresses (de/re)-compositions of : 0 Represents imperative-style
parallel computations - data-parallel computations : program code for data-parallel _f

1 Agnostic from hardware and
optimization details

- ® Captures high-level information
relevant for generating high
performing code

- Data Movement & Parallelization

computations

OpenCL - OpenCL

Optimizations expressed, by : : o Code-level optimizations simple toé

assigning (de/re)-composed : express: CL-IR specifically limited - .
computations to memory and core : : and tailored to expressing data- : :
hierarchy of target architecture : : parallel computations :

Built around three core IRs with

automated transformations between them

[1] Rasch, “(De/Re)-Composition of Data-Parallel Computations via Multi-Dimensional Homomorphisms”, TOPLAS’24

[2] Rasch, Schulze, Steuwer, Gorlatch, “Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via 19
Auto-Tuning Framework (ATF)”, TACO’21

Transformation: CL-IR — CL-IR

Code-Level Optimizations:

Eliminate Standard
Functional Overhead Code-Level Optimizations
COElimination Algebraic Index Simplifications
Partition Index Elimination Loop Unrolling
Buffer Size Reduction ., Function Inlining

Minimalistic design of CL-IR

simplifies expressing code-level optimizations

20

Overview

End-to-end ML Code-Generation approach:

Based on :
Auto-Tuning [2] :

High-Level IR

é- Expresses a wide range of data-
parallel computations

MDH Based [1] e _
| Transition: ; Straightforward
""""""" ; Functional = Imperative : :(no optimizations required) : CUDA
.............. CL - CL 5 K
i o~ : CUDA - CUDA
HL - LL LL-CL ' CL - {...}
> LL-IR » CL-IR > | OpenMP
A A _f
OpenMP - OpenMP
: Low-Level IR L Code-Level IR OpenCL
0 Expresses (de/re)-compositions of : 0 Represents imperative-style
- data-parallel computations : program code for data-parallel _f

1 Agnostic from hardware and
optimization details

- ® Captures high-level information
relevant for generating high
performing code

- Data Movement & Parallelization

computations

OpenCL - OpenCL

Optimizations expressed, by : : o Code-level optimizations simple toé

assigning (de/re)-composed : express: CL-IR specifically limited - .
computations to memory and core : : and tailored to expressing data- : :
hierarchy of target architecture : : parallel computations :

Built around three core IRs with

automated transformations between them

[1] Rasch, “(De/Re)-Composition of Data-Parallel Computations via Multi-Dimensional Homomorphisms”, TOPLAS’24

[2] Rasch, Schulze, Steuwer, Gorlatch, “Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via 01
Auto-Tuning Framework (ATF)”, TACO’21

Transformation: CL-IR — {...}

Straightforward — all major optimization decisions expressed in earlier steps:

//

M 1 1[2][I,K] in SMI[1,2]
v_1_1[2] [K] in RM[1]
w_1 1[2][T1] in RM[1]
//

for(p_1.2 < 4){
par_for<3,1>(p_2_1 < 8){
//
I3
}

CL-IR

#define T_INP float
#define T _OUT float

NVIDIA.
#define I 1024 CUDA
#define K 128
//

__shared T _INP M 1 1[2]1I[I]1I[K];
T INP v_1 1[2]I[K];
T OUT w 1 1[2]11[1I];

// .

for(int p_1_2=0; p_1 2<4; ++p_1_2){
int p_2_1 = threadIdx.x;{
// .
¥
¥

Designed to be straightforward, allowing
easy extension to new target ML programming models

CUDA

22

Overview

End-to-end ML Code-Generation approach:

MDH Based [1] e R :
/\ I Transition: : Straightforward
"""" Basedon Funstional 2 Imperative :(no optimizations requred) : | CUDA

4

Auto-Tuning [2]

............................ CL - CL
: v ~ CUDA - CUDA
HL - LL LL->CL ' CL-{...}
User —|HL-IR > LL-IR » CL-IR > | OpenMP
A A _f
OpenMP - OpenMP
; High-Level IR x Low-Level IR P Code-Level IR : OpenCL
é- Expresses a wide range of data- : ° Expresses (de/re)-compositions of : 0 Represents imperative-style
: parallel computations : : data-parallel computations : : program code for data-parallel : 1
1 Agnostic from hardware and ::e Data Movement & Parallelization : computations : 0 CLoO CL
: optimization details : : Optimizations expressed, by : :© Code-level optimizations simple to: pen - vpen
‘e Captures high-level information :: @ssigning (de/re)-composed : 1 express: CL-IR specifically limited : .
relevant for generating high computations to memory and core : : and tailored to expressing data- : :
performing code hierarchy of target architecture ~ : : parallel computations :

Built around three core IRs with

automated transformations between them

[1] Rasch, “(De/Re)-Composition of Data-Parallel Computations via Multi-Dimensional Homomorphisms”, TOPLAS’24

[2] Rasch, Schulze, Steuwer, Gorlatch, “Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via 03
Auto-Tuning Framework (ATF)”, TACO’21

Transformation: {...} = {...}

Final, target-specific optimizations:

NVIDIA
Tensor Cores

AMD
Matrix Cores

S

-
L
'
'l
'
.
.
.l
'
’
14
b

-
.l
.
o
-
-
e
e
e
e
>
.
»
e

2X

3

Intel® Advanced Matrix
Extensions (AMX) built-in for Al

SNSRI AR AR AR AN AN

SRR SRR R AR AR NN IR S A

ECOCCLLCCTERRY -

20 Ragata § iy

Applies target-specific optimizations that

exceed the intended generality of the CL-IR abstraction

24

Experimental Results

Experimental evaluation in terms of Performance & Portability & Productivity:

Competitors: ML Kernels:

1. Scheduling Approach: 1. Linear Algebra Routines:
- Apache TVM [1] (GPU & CPU) Dot Product (Dot)
2. Polyhedral Compilers: Matrix-Vector Multiplication (MatVec)
- PPCG [2] (GPU) Matrix Multiplication (MatMul)
- Pluto [3] (CPU) Matrix Multiplication Transposed (MatMu 1™T)

3. Domain-Specific Libraries: batched Matrix Multiplication (bMatMu 1)
- NVIDIA cuBLAS & cuDNN (GPU) 2. Convolutions:

- Intel oneMKL & oneDNN (CPU) - Multi-Channel Convolution (MCC)

- Capsule-Style Convolution (MCC_Capsule)

i n t e I > Data Characteristics
- Computation No. Sizes Basic Type
NVIDIA.

Dot 1 e 22 fp32
2 10" 107 fp32
MatVec 1 4096x4096 4096 fp32
2 8192x8192 8192 fp32
[1] Chen et aI., “TVM: An Automated End-to-End OptlmIZIng MatMul 1 1024x1024 1024x1024 fp32
Compiler for Deep Learning”, OSDI’18 > 12048 2048x1000 fp32
MatMulArT 1 64x10 500x64 fp32
[2] Verdoolaege et al., “Polyhedral Parallel Code Generation for
CUDA”’ TACO13 bMatMul 1 16x10x64 16x64x500 fp32
[3] Bondhugula et al., “PLuTo: A Practical and Fully Automatic MeC 1 1X512x7x7 512%512x3x3 032
Polyhedral Program Optimization System”, PLDI’08 5 1X230x230x3 BAXTXT X3 032
MCC_Caps 1 16x230x230x3x4x4 | 64X7X7x3x4x4 fp32
2 1x230x230x3x4x4 | 67X7TX7x3x4x4 fp32 25

Experimental Results

Performance results for ML kernels on GPU and CPU:

[] Hand Optimized (cuBLAS, cuDNN)
[] Hand Optimized (oneMKL, oneDNNEKR)

| [PPCG+ATF
| [Pluto+ATF

\ Il PPCG
TVM
= | [Pluto

OURs

GPU:
CPU:

bMatMul

ps

ajqejieAe jou

Inp. 2

Dot

MatMul

MCC

(8] ©
o o
% o
s O
- = s|qejiens uoi
AI —
> 2 e
o T =
©
O = o't mu
e °-.H -
- =
= 3
& o
n N m
— o
9 <
£
E
8 = 3
(=] ©
S =
= m — <
o
0T
) =
w. 4 s =
0'€ £%5
=
0
a
Q 1]
o o
% o
= o
- =
o —3 €1
o g =
(L) .|"m () ¥
[\ =2
[orf £
W £
©
= s
< Y
< ;8
(]
>
2

dnpoaads

dnpoaads

dnpoaads

0
-
)
©
o
o a
ol
5
We
m.w_
o £
8 9
C o
£ 0
O -
Mn
a 7
o O
o £
'c C©
o ©
©

>
o €
L 4
Cr
c P
)
Mh
fd
o
Q
Q
©
fd
(/)]

20

Summary

We introduce a systematic ML code generation process:

- Fully automatic, by separating optimization concerns across abstraction levels
- Designed to be systematically extensible for new target ML models (Triton, etc)
- Formal foundation, based on algebraic MDH formalism

- High performance on different architectures (including GPUs and CPUs)

Future Work:

- Show how our design contributes to aggressive kernel fusion optimization
- Exploit ML-specific hardware extensions
- Assembly-level targets (PTX, ...)

- Sparse Computations

27

m— " = Universitit
Miunster

https://richardschulze.net
r.schulze@uni-muenster.de

Questions?

Schulze

https://arirasch.net
a.rasch@uni-muenster.de

https://atf-tuner.org

Code Code
Generation Optimization

mailto:r.schulze@uni-muenster.de
mailto:a.rasch@uni-muenster.de

