—— = Universitit LATHC 2026

Munster

4th Languages, Architectures, and Tools
for Heterogeneous Computing

Al Compilation for Heterogeneous Targets
via MDH and ATF

Ari Rasch, Richard Schulze
University of Munster, Germany

Goal of MDH+ATF

An approach to Generating (MDH) & Optimizing (ATF) code for Al computations’

High-Level Program Low-Level Program
Representation

Executable
Representation Program Code

lobal float in_vector,

Kernel void gemv_Tst(_global Tloats In_matrix, ﬁ
lobal floatx in_vector,
3tobat floatk out.vector, 3tobat floatk out.vector, NVIDIA.
5 5 CUDA
rivate float res_prv = 0.0f; ivate float res_prv = 0.0f;
/7 locet nenory for a W's conputati /7 Jocet nenory for a W's conputat
__local float res_lcl[NUM_WI_1][NUM wWI_2 1; - float res_lcll NUM_WI_1 J[NUM wWI_2 1;
// iteration over P_sq blocks
for(int i_sq = 1 ; i_sq <= NUM_SQ_1 ; ++i_sq) {
for(int j_sq =1 j_sq <= NUM_SQ_2 ; ++j_sq) {
res_prv = 0.0f;

4/ iteration over P_sq blocks

for(int i_sq =1 ; i_sq <= NUM_SQ_1 ; ++i_sq) {
for(int j_sq 1, j_sq <= NUM_S0_2 ; ++j_sqa) {

res_prv = 0.0f;

\ computation on a P_ui partition

T_PART SIZE_1 ; ++i)

§ <= WI_PART_SIZE_2 ; ++j)

Wil 4, 5, 0) s mylpwiC i, 3, 1);

7/ sequent

7/ sequent

U computation on a P_wi partition
I_PART_SIZE_1 ; ++i)
j <= WI_PART_SIZE_2 ; ++j
in local memor,
res_Lcll WI_ID_1][WI_ID_2]

t)
¥ Wil 4,3, 0)k my o il L, g, 10
// store result in local memory
21 = res_prv;
barrier(CLK_LOCAL_MEM_FENCE);

res_Lcll WI_ID_1][WI_ID_2]

1/ store result

- nv I D I A®
= res_prv; -
barrier(CLK_LOCAL_MEM_FENCE);
// conbine the WIs' results in dinension x // conbine the WIs' results in dinension
for(int stride = NUM_WI_2 / 2 ; stride > 0 ; stride /= 2) A for(int stride = NUM_WI_2
(W02 < strig
T W

0_1 H WI_ID_2] += res_lcl[WI_ID_1][WI_ID_2 + stride I;
barrier(CLK_LOCAL_MEM_FENCE);
¥

// store WGs' results in global memory
1f(WI_ID_2 == 0)

my_res(i_sq) = res_lcll WI_ID_1][0];

/2 ; stride > 0 ; stride /= 2)

n(LLI0.2 < str
1w

1t H WI_ID_2] += res_lcl[WI_ID_1][WI_ID_2 + stride];
barrier(CLK_LOCAL_MEM_FENCE);
¥

// store WGs' results in global memory
1f(WI_ID_2 == 0)

my_res("i_sq) = res_lcll WI_ID_1][0];
barrier(CLK_LOCAL_MEM_FENCE);

} // end of for-loop j_sq
} 7/ end of for-loop i_sq
//_end of kernel

AMD
Google

barrier(CLK_LOCAL_MEM_FENCE);

} // end of for-loop j_sq
} 7/ end of for-loop i_sq
[/ end of k

(1) (2)
Generation Optimization
[TOPLAS’24, PACT’19,

[TACO’21, CCPE’19,
IJPP’18] HPCC'17]

Heterogeneous
Targets

1. Part: How to generate automatically
optimizable (auto-tunable) code?

2. Part: How to optimize
auto-tune) code?

1 MDH+ATF extend beyond Al workloads and target arbitrary data-parallel computations

Code Generation via MDH

Overview Getting Started Code Examples Publications Citations Contact

Multi-Dimensional Homomorphisms (MDH)
[\/\ D I—l An Algebraic Approach Toward Performance & Portability & Productivity

for Data-Parallel Computations

Overview

The approach of Multi-Dimensional Homomorphisms (MDH) is an algebraic formalism for systematically reasoning about de-
composition and re-composition strategies of data-parallel computations (such as linear algebra routines and stencil
computations) for the memory and core hierarchies of state-of-the-art parallel architectures (GPUs, multi-core CPU, multi-
device and multi-node systems, etc).

The MDH approach (formally) introduces:

1. High-Level Program Representation (Contribution 1) that enables the user conveniently implementing data-parallel
computations, agnostic from hardware and optimization details;

2. Low-Level Program Representation (Contribution 2) that expresses device- and data-optimized de- and re-composition
strategies of computations;

3. Lowering Process (Contribution 3) that fully automatically lowers a data-parallel computation expressed in its high-level
program representation to an optimized instance in its low-level representation, based on concepts from automatic
performance optimization (a.k.a. auto-tuning), using the Auto-Tuning Framework (ATF).

The MDH's low-level representation is designed such that Code Generation from it (e.g., in OpenMP for CPUs, CUDA for
NVIDIA GPUs, or OpenCL for multiple kinds of architectures) becomes straightforward.

T 5 Contribution {1) Contribution (2) r 1

ingar Ocentw
B T Contribution (3) SR T——
e . . - [

FERIE e N S o
Data W B T — e | S—)
Dote | | T hL | LL S

Tr—— 4 REP _’T REP [———J wem
S e - -:hrs_-.'.v,: e . r 1
: T Automatized s il | T
. > | (via Auto-Tuning) : ’

User-Defined Straightforward

Our Experiments report encouraging results on GPUs and CPUs for MDH as compared to state-of-practice approaches,
including NVIDIA cuBLAS/cuDNN and Intel oneMKL/oneDNN which are hand-optimized libraries provided by vendors.

ACM TOPLAS 2024

https://mdh-lang.org

(De/Re)-Composition of Data-Parallel Computations via
Multi-Dimensional Homomorphisms

ARI RASCH, University of Muenster, Germany

Data-parallel computations, such as linear algebra routines and stencil computations, constitute one of the most
relevant classes in parallel computing, e.g., due to their importance for deep learning. Efficiently de-composing
such computations for the memory and core hierarchies of modern architectures and re-composing the
computed intermediate results back to the final result—we say (de/re)-composition for short—is key to achieve
high performance for these computations on, e.g., GPU and CPU. Current high-level approaches to generating
data-parallel code are often restricted to a particular subclass of data-parallel computations and architectures
(e.g., only linear algebra routines on only GPU or only stencil computations), and/or the approaches rely
on a user-guided optimization process for a well-performing (de/re)-composition of computations, which is
complex and error prone for the user.

We formally introduce a systematic (de/re)-composition approach, based on the algebraic formalism of
Multi-Dimensional Homomorphisms (MDHs). Our approach is designed as general enough to be applicable to
a wide range of data-parallel computations and for various kinds of target parallel architectures. To efficiently
target the deep and complex memory and core hierarchies of contemporary architectures, we exploit our
introduced (de/re)-composition approach for a correct-by-construction, parametrized cache blocking, and
parallelization strategy. We show that our approach is powerful enough to express, in the same formalism, the
(de/re)-composition strategies of different classes of state-of-the-art approaches (scheduling-based, polyhedral,
etc.), and we demonstrate that the parameters of our strategies enable systematically generating code that
can be fully automatically optimized (auto-tuned) for the particular target architecture and characteristics of
the input and output data (e.g., their sizes and memory layouts). Particularly, our experiments confirm that
via auto-tuning, we achieve higher performance than state-of-the-art approaches, including hand-optimized
solutions provided by vendors (such as NVIDIA cuBLAS/cuDNN and Intel oneMKL/oneDNN), on real-world
datasets and for a variety of data-parallel computations, including linear algebra routines, stencil and quantum
chemistry computations, data mining algorithms, and computations that recently gained high attention due to
their relevance for deep learning.

CCS Concepts: « Computing methodologies — Parallel computing methodologies; Machine learning;
« Theory of computation — Program semantics; - Software and its engineering — Compilers;

Additional Key Words and Phrases: Code generation, data parallelism, auto-tuning, GPU, CPU, OpenMP,
CUDA, OpenCL, linear algebra, stencils computation, quantum chemistry, data mining, deep learning

A full version of this article is provided by Rasch [2024], which presents our novel concepts with all of their formal details. In
contrast to the full version, this article relies on a simplified formal foundation for better illustration and easier understanding.
We often refer the interested reader to Rasch [2024] for formal details that should not be required for understanding the
basic ideas and concepts of our approach.

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—project PPP-DL
(470527619).

Author’s Contact Information: Ari Rasch (Corresponding author), University of Muenster, Muenster, Germany; e-mail:
a.rasch@uni-muenster.de.

Goal of MDH

MDH is a (formal) framework for expressing & optimizing Al computations:

1.

: Contribution (1) Contribution (2)
Linear : : OpenMP
Algebra Contribution (3)
. 5 CUDA
Data Stencils
Mining

OpenCL

Quantum
Chemistry

Automated
T (via Auto-Tuning) T
User-Defned Straightforward

Contribution 1 (HL-REP): defines Al computation—based on common algebraic properties—and introduces
higher-order functions for expressing these computations, independent of hardware and optimization details,
while capturing high-level semantic information essential for generating high-performance code

Contribution 2 (LL-REP): enables expressing and reasoning about optimizations for the memory and core
hierarchies of contemporary parallel architectures and generalizes these optimizations to apply to arbitrary
combinations of Al computations and architectures

Contribution 3 (—): introduces a structured optimization process—for arbitrary combinations of an Al
computations and parallel architectures—that enables fully automated optimization (auto-tuning)

MDH: High-Level Representation

Example: MatVec expressed in MDH

MatVec TETYPEILKEN> . ot view<T>(w: (i,k)—(i)) o NMOH
md hom<I,K>(*, (#,+)) o

inp view<T,T>(M:(i,k)~(i,k) ,v:(i,k)—~(k))

MDH High-Level Representation of MatVec

void MatVec(TI[I M, TI[I v, T[] w)

What is happening here: :

for(int i=0 ; i < I ; ++1i)
for(int k=0 ; k < K ; ++k)
wli] += M[i]l[k] * wIlk]l; _

1 N
 md_hom expresses the core algebraic computation MatVec in C++ &

e 1np_view captures the accesses to input data

« out_view captures the accesses to output data

"We can generate such MDH expressions also automatically from straightforward (annotated) code in Python, C, ...

MDH: High-Level Representation

md_hom || f | ®1,...,®p
MatMul<F,F> * +H, +H, +
MatMul<F,T> * +H-, H, +
MatMul<T,F> * +H,+H, +
MatMul<T,T> * +H, -+
BatchMatMul<F,F> * H,,H+
BiasAddGrad<NHWC> id +, 4,4, H
BiasAddGrad<NCHW> id +,H, 4, +
CheckNumerics (z) — (x == NaN) Y
Sum<0><F> id +, -+, +, H
Sum<0><T> id +,H,
Sum<1><F> id H, 4, Hy e, H
Sum<0, 1><F> id + 4, Hy e, H
Prod<0><F> id * H, Hy ., H
AL1<0><F> id &&, +, +, ..., H

Linear Algebra, Contractions, ...
(Computation Specification)

md_hom || f | ®1,...,®p
Fill id Hyo, H
ExpandDims<0> id Hy e, H
ExpandDims<1> id Hy o, H
ExpandDims<0, 1> id H, .., H
Transpose<o> id +Hy o, H
Exp exp Hy o, H
Mul * H, .o, H
BiasAdd<NHWC> + +H, A S H
BiasAdd<NCHW> + +H, -, S H
Range (s,d,i) — (s +dx1) +H

Point-Wise, Re-Shaping, ...
(Computation Specification)

inp_view out_view

Views I I I [0)

MatMul<F,F> (4,7,k) — (i, k) (4,5, k) — (k,5) (4,7,k) — (3,7)

MatMul<F,T> (1,7,k) — (i, k) (4,7, k) = (4,k) (4,7, k) — (4, 7)

MatMul<T,F> (i,7,k) — (k, 1) (4,7, k) — (k,5) (1,7,k) — (3,7)

MatMul<T,T> (1,7, k) — (k1) (1,7, k) = (4,k) (4,7, k) — (4, 7)

BatchMatMul<F,F> (bl,...,i,j,k)H(bl, ,i,ki) (bl,...,i,j,)’—)(bl, ,k‘,j) (bl,...,i,j,k)H(bl, ,Z,])

BiasAddGrad<NHWC> || (n,h,w,c) — (n,h,w,c) s (n,h,w,c) — (n,h,w)

BiasAddGrad<NCHW> || (n,c, h,w) — (n,c, h,w) s (n, e, hyw) — (n, h,w)

CheckNumerics (i1y...yip) — (i1, ..,iD) v (i1y..-yip) = ()

Sum<0><F> (i1,.-.,tp) — (i1,-..,iD) s (i1,.--,ip) —> (i2,...,ip)

Sum<0><T> (i1,--.,ip) > (i1,-..,iD) s (i1,.-.,ip) — (0,42,...,ip)

Sum<1><F> (il,. .,’L'D)'—>(Z'1, .,iD) / (il,. .y l—)(il,ig, ..,iD)

Sum<0, 1><F> (il,. .,iD)'—)<i1, .,iD) / (’il, ,1D l—>(’i3,.. ,iD)

Prod<0><F> (il, ,ZD) — (’Ll, ,iD) / (il, ,iD) — (ig, ,iD)

A11<0><F> (il, 7ZD) —> (il, ,iD) / (il, ,ZD) — (ig, ,iD)

Linear Algebra, Contractions, ... (Data Specification)
inp_view out_view

Views I | I [0)

Fill (i1,...,ip) = () / i1,-.-,ip) — (i1,...,ip)
ExpandDims<0> (Zl, ,iD) — (il, ,iD) v i1, ,iD) — (O,il,Zg,...,iD)
ExpandDims<0> (i1,...,ip) > (i1, .-,iD) v i1y...,ip) + (i1,0,42,...,ip)
ExpandDims<0,1> (117 7iD) = (217 77;D) / 11, 7iD) = (0707i17 7iD)
Transpose<o> (i1,...,ip) — (o(i1),...,0(ip)) v i1y.voyip) > (i1,...,9D)
Exp (il,. ,Z'D)i—>(ll,.. ,iD) / 11, ,iD)i—>(i1, ,iD)

(2'17- alD)'_)(Zlv 7ZD) (2'17 71D>'_>(Zla72D) 11, 77:D)'_><Z.17 7ZD>

Mul (i1,..-,ip) = (i1,...,iD) (i1y---5ip) = (i1, ik—1,%k+1,---,iD) | (i1,...,ip) > (i1,...,iD)
BiasAdd<NHWC> (n, h,w,c) = (n,h,w,c) (n, h,w,c) — (c) (n, h,w,c) = (n,h,w,c)
BiasAdd<NCHW> (n, ¢, h,w) = (n,c, h,w) (n, e, hy,w) — (c) n,c, h,w) — (n,c, h,w)
Range (1) = () (1) = () i) — (i)

Point-Wise, Re-Shaping, ...

(Data Specification)

The MDH high-level representation is capable of expressing

various kinds of Al computations

MDH: High-Level Representation

We offer a Python interface for MDH'’s high-level program representation:

<T€TYPE|I,KeN> _ out view<T>(w:(i,k)—(i)) o PVWE)LJ

md hom<I,K>(*, (#,+)) o

MatVec

inp view<T,T>(M:(i,k)~(i,k) ,v:(i,k)~(k))

[En MDH Formalis@]

@mdh ()
def mdh matvec():
return (
out view[T](w = [lambda i,k: (1)]),
md hom[I,K](mul, (cc, pw(scalar plus))),
inp view[T,T](M [lambda i,k: (i,k)] ,
\" [lambda i,k: (k) 1)

def matvec(T: BasicType, I: int, K: int): P

The MDH-Python-Interface is designed to be
close to MDH'’s formal representation

MDH: Low-Level Representation

Goals:

1. Expressing a hardware- & data-optimized de-composition and re-composition of an Al
computation, based on an Abstract System Model (ASM)

2. Being straightforwardly transformable to executable program code (e.g., in OpenMP, CUDA,
and OpenCL)—major optimization decisions explicitly expressed in low-level representation

Multi-Layered,

i D13 1 inp_ view
4 w Mult} D1men51on?1. g
; Iteration Space Tiling —:
: . . oy
®§HM x) |) . (HM, x) T %é y)
pi€[0,2)N0 4--‘:1'-'-'-':'--- p3€[0,4)N, » A p}e[0,2)NO e p§6[0,4)N0 Assignment of tile
— w: HM[1] — w: HM[1] — M: HM[1,2] (;} — M: HM[1,2] tati ¢
a3 vi BM[L 7 v: HMLL] compu allons (o]
o ‘,,5\ core hierarchy
®§COR’X) ®§COR,y) _H_§COR,X) A3 %éCOR’y) of target device
p%e[078)N0 4 p%e[0516)N0 p%€[078)N0 e pge[0716)N0
— w: HM[1] — w: HM[1] — M: HMI[1,2] 4 — M: HMI[1,2]
a7 vi BMI1] 7 v HM[A)
o B : Assignment of tile
®(L1,X) ®(L1,Y) _H_(L].,X) ‘,-"—' N —H-(Ll,y) .
1 T 2 1 2 : computations to
pe[0,32)ng 7 p3e[0,64)n, p1€[0,32)n, ek P3€0,64)r, memory hierarchy
- w: L1[1] - w: L1[1] — M: HM[1,2] {6} — M: HM[1,2] ' o
o v: L1[1] 7 v Li[1] of target device
t <p1.p3 | P1.p5 | PI.p3> J | _<pi.ps | P15 | PY.pa>
a <~ 'a
/ / v
— < (1,2) , (3,4) , (5,6) >
Re_Composition — < (HM,X),(HM:Y) , (COR,x),(COR,x) , (Ll,X),(Ll,y) > De_Composition
— M: HM[1,2] , v: L1[1]
— w: L1[1]

<
<

8
Scalar Computation

MDH: Lowering: High Level = Low-Level

Based on (formally defined) performance-critical parameters, for a structured optimization process:

No. | Name Range Description
© | #PRT MDH-LVL — N number of parts
D1 | 0}-ord MDH-LVL <> MDH-LVL de-composition order
D2 | <>|-ass MDH-LVL <> ASM-LVL ASM assignment (de-composition)
D3 | J-mem*®> | MDH-LVL — MR memory regions of input BUFs (ib)
D4 | oy MDH-LVL - [1,..., Dil]s | memory layouts of input BUFs (ib))
S1 | 0f-ord MDH-LVL <> MDH-LVL scalar function order
S2 | < foass MDH-LVL < ASM-LVL ASM assignment (scalar function) € :
S3 | fr-mem*®> | MR memory region of input BUF (ib)
S4]fff’;em [1,....D]s memory layout of input BUF (ib)
S5 | f1-mem<®> | MR memory region of output BUF (ob)

<
S6 Jfﬁf);em [1,...,D%]s memory layout of output BUF (ob)
R1 | 01-ord MDH-LVL <> MDH-LVL re-composition order
R2 | <>1-ass MDH-LVL <> ASM-LVL ASM assignment (re-composition)«
R3 | t-mem*°®> | MDH-LVL — MR memory regions of output BUFs (ob)
R4 af_on?gm MDH-LVL — [1,...,D%]s | memory layouts of output BUFs (ob)

exploiting core hierarchy
(parallelization)

e

e e -

exploiting memory hierarchy
(data movements)

e — R E—

Our parameters
unify & generalize & combine
(and also formalize)
well-proven optimizations

(e.g., tiling, data movements,

and parallelization)

We use our Auto-Tuning Framework (ATF) to automatically determine optimized values of parameters!

1 We optionally allow (expert) users to incorporate their knowledge into the optimization process via MDH-Based Schedules [CC’23] 9

Code Optimization via ATF

Overview Getting Started Code Examples Publications Citations Contact
—> <
Auto-Tuning Framework (ATF)
Efficient Auto-Tuning of Parallel Programs with
Constrained Tuning Parameters
Overview
The Auto-Tuning Framework [ATF) is a general-purpose auto-tuning approach: given a program that is implemented as

generic in performance-critical program parameters (a.k.a. tuning parameters), such as sizes of tiles and numbers of
threads, ATF fully automatically determines a hardware- and data-optimized configuration of such parameters.

Key Feature of ATF

A key feature of ATF is its support for Tuning Parameter Constraints, Parameter constraints allow auto-tuning programs
whose tuning parameters have so-called interdependencies among them, e.g., the value of one tuning parameter has to
evenly divide the value of another tuning parameter.

ATF's support for parameter constraints is important: modern parallel programs target novel parallel architectures, and such
architectures typically have deep memory and core hierarchies thus requiring constraints on tuning parameters, e.g., the
value of a tile size tuning parameter on an upper memory layer has to be a multiple of a tile size value on 3 lower memory
layer.

For such parameters, ATF introduces novel concepts for Generating & Storing & Exploring the search spaces of constrained
tuning parameters, thereby contributing to a substantially more efficient overall auto-tuning process for such parameters, as
confirmed in our Experiments,

Generality of ATF
For wide applicability, ATF is designed as generic in:

1. The target program's Programming Language, e.9., C/Cer+, CUDA, OpenMP, or OpenCL, ATF offers pre-implemented
cost functions for conveniently auto-tuning C/C++ programs, as well as CUDA and OpenCL kernels which require host
code for their execution which is automatically generated and executed by ATF's pre-implemented CUDA and OpenCL
cost functions. ATF also offers a pre-implemented generic cost function that can be used for conveniently auto-tuning
programs in any other programming language different from C/C++, CUDA, and OpenCL.

ACM TACO 2021

https://atf-tuner.org

Efficient Auto-Tuning of Parallel Programs with
Interdependent Tuning Parameters via Auto-Tuning
Framework (ATF)

ARI RASCH and RICHARD SCHULZE, University of Muenster, Germany
MICHEL STEUWER, University of Edinburgh, United Kingdom
SERGEI GORLATCH, University of Muenster, Germany

Auto-tuning is a popular approach to program optimization: it automatically finds good configurations of a
program’s so-called tuning parameters whose values are crucial for achieving high performance for a par-
ticular parallel architecture and characteristics of input/output data. We present three new contributions of
the Auto-Tuning Framework (ATF), which enable a key advantage in general-purpose auto-tuning: efficiently
optimizing programs whose tuning parameters have interdependencies among them. We make the following
contributions to the three main phases of general-purpose auto-tuning: (1) ATF generates the search space
of interdependent tuning parameters with high performance by efficiently exploiting parameter constraints;
(2) ATF stores such search spaces efficiently in memory, based on a novel chain-of-trees search space structure;
(3) ATF explores these search spaces faster, by employing a multi-dimensional search strategy on its chain-
of-trees search space representation. Our experiments demonstrate that, compared to the state-of-the-art,
general-purpose auto-tuning frameworks, ATF substantially improves generating, storing, and exploring the
search space of interdependent tuning parameters, thereby enabling an efficient overall auto-tuning process
for important applications from popular domains, including stencil computations, linear algebra routines,
quantum chemistry computations, and data mining algorithms.

CCS Concepts: « General and reference — Performance; - Computer systems organization — Paral-
lel architectures; « Software and its engineering — Parallel programming languages;

Additional Key Words and Phrases: Auto-tuning, parallel programs, interdependent tuning parameters

ACM Reference format:

Ari Rasch, Richard Schulze, Michel Steuwer, and Sergei Gorlatch. 2021. Efficient Auto-Tuning of Parallel
Programs with Interdependent Tuning Parameters via Auto-Tuning Framework (ATF). ACM Trans. Archit.
Code Optim. 18, 1, Article 1 (January 2021), 26 pages.

https://doi.org/10.1145/3427093

This is a new paper, not an extension of a conference paper.

Authors’ addresses: A. Rasch, R. Schulze, and S. Gorlatch, University of Muenster, Muenster, Germany; emails:
{a.rasch, r.schulze, gorlatch}@uni-muenster.de; M. Steuwer, University of Edinburgh, Edinburgh, United Kingdom; email:
michel. steuwer@glasgow.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1544-3566/2021/01-ART1

10

Goal of ATF

Auto-Tuning Framework (ATF) provides a key advantage over related approaches:

ATF identifies values of performance-critical parameters with

interdependencies among them

via optimized processes for

generating & storing & exploring

the spaces of interdependent parameters

ATF auto-tunes programs written in arbitrary programming languages (e.9., CUDA and OpenMP).

For this, ATF introduces:

tuner.addParameter(“tp_1", T1)
tuner.addParameter(“tp_2", T2)
/] e

tuner.addConstraint (

[1(T1 tp_1, T2 tp_2, ..) —> bool

n
’
]
’

=

traditional constraints

SP i=[(1,1) | (2,1) | (2,2) | = 1

Defined on:

search space (traditional)
vs. parameters (ATF)

4

tuner.addParameter(“tp_1", R1,
tuner.addParameter(“tp_2", R2,

[1(T1 tp_1) —> bool { /* ..

x/ })
[1(T2 tp_2) —> bool { /* .. x/ })

- -

ATF

parameter constraints

traditional search space
ATF

ﬁ CoT search space

Structure is:
verbose & 1D (traditional)
vs. compact & nD (ATF)

ATF: User Interfaces

ATF's Python-based user intertace!:

Name

Range

| In a nutsheil

Input Size
N = 1000

Step 1l: Generate the Search Space

(either interval or set)

\

ATF Website Constraint

(may contain tuning parameters)

Arbitrary & pre-implemented cost functions

Various pre-implemented

PDF| Based Auto-Tuning in Python”, CC’25

TATF also offers a GPL-based interface for (online-tuning) C++ programs [HPCC’17],

as well as a DSL-based interface (offline tuning) [CCPE’18]

Search Techniques & Abort Conditions \

Schulze, Gorlatch, Rasch, “pyATF: Constraint-

WPT = TP "WPT' ’

—»Interval(1,N) ,

— ®lambda WPT: N $ WPT == 0)
LS = TP('LS' '
Interval(1,N) ’
lambda WPT,LS: (N/WPT) % LS == 0)

Step 2:
saxpy kernel = # ..

Implement a Cost Function
(kernel’s code & name)

N = np.int32(N)
a = np.float32(np.random.random())
X = np.random.rand(N).astype(np.float32)
y = np.random.rand(N).astype(np.float32)
:;ﬁz cuda.CostFunction(saxpy cuda kernel) \
.device id(0) \
.kernel args(N, a,x,y) \
.grid dim(lambda WPT,LS: N/WPT/LS) \
.block dim(lambda LS: LS)
Step I\ Explore the Search Space
config = Tuner().tuning parameters(WPT,LS) \
.search technique(AUCBandit()) \
.tune(cf, Evaluations(50))
12

https://dl.acm.org/doi/10.1145/3708493.3712682
https://dl.acm.org/doi/10.1145/3708493.3712682

Experimental Results

MDH+ATF is experimentally evaluated in terms of Performance & Portability & Productivity:

Competitors: Case Studies:

1. Scheduling Approach: 1. Linear Algebra Routines:
- Apache TVM [1] (GPU & CPU) - Matrix Multiplication (MatMul)

2. Polyhedral Compilers: - Matrix-Vector Multiplication (MatVec)
- PPCG [2] (GPU) - Dot Product (Dot)
- Pluto [3] (CPU) 2. Stencil Computations:

3. Domain-Specific Libraries: - Jacobi Computation (Jacobi3D)
- NVIDIA cuBLAS & cuDNN (GPU) - Gaussian Convolution (Conv2D)
- Intel oneMKL & oneDNN (CPU) 3. Quantum Chemistry:

- Coupled Cluster (CCSD(T))

.) 4. Data Mining:
NVIDIA. Qlltil

. - Probabilistic Record Linkage (PRL)
5. Deep Learning:
[1] Chen et al., “TVM: An Automated End-to-End Optimizing Compiler for - Multi-Channel Convolution (MCC)

Deep Learning”, OSDI’18

- Capsule-Style Convolution (MCC_Capsule)

[2] Verdoolaege et al., “Polyhedral Parallel Code Generation for CUDA”,
TACO’13

[3] Bondhugula et al., “PLuTo: A Practical and Fully Automatic Polyhedral
Program Optimization System”, PLDI’08 13

Experimental Results

Case Study: Matrix Multiplication (MatMul)

Performance: ; .
= mtel)
NVIDIA Ampere GPU NVIDIA. N Intel Skylake CPU N
Lin@ar [t e Linear |
A'I_ ebra ______________________________ M atMUI _____________________________ AlgEbra ----------------------------- MatMul ----------------------------- agm
9 10,500,64 1024,1024,1024 10,500,64 | 1024,1024,1024 F’()I’tiit)llltll:
TWM+Ansor 1-00 - 1-00 N TVM+Ansor L Pennycook Metric
-- AN@AIr [
PPCG MatMul
...... Pluto Algebra | o ST
rceenrr TR T - 10,500,64 1024,1024,1024
Pluto+ATF MDH+ATE
cuBlAS [1.40) 0,92 | 0 0 e || TR .
------ MKL e
CUBLASEx | 1.20 SR @.01 o N TVM+Ansor 0.83 | 0.50
""" oneMKL (JIT) - |
CUBLASLt

Productivity: @ _

def matmul(T: BasicType, I: int, J: int, K: int):
@mdh ()
def matmul T I J K():

return (

out view[T](C=[lambda i, j, k:),
md_hom[I, J, K] ¥
inp view[T, T](A=[lambda i, j, k: (i,k)},
B=[lambda i, j, k: }k(k,3)R)

)

return matmul T I J K

Higher Performance than vendor
libraries; Highest Portability:;

Productive, by requiring basic
algebraic properties only

14

Experimental Results

Case Study: Multi-Channel Convolution (MCCQ)

Performance: ' (lntel)
Deep NVIDIA Ampere Gpy NVIDIA. Deep | Intel Skylake CPU ="
Learning ’ Learning ResNet-50 VGG-16
TVM+Ansor TVM+Ansor 1.53 1.14 1.97 Portabilitv:
PPCG Pluto 355.81 130.80 = 186.25
et BEE RN EYS 2 lutoraTr | 13.08 (\ .1 s361 Deep | Pennycook Metric
* o el Learning ResNet-50 | VGG-16
CcuDNN oneDNN MDH+ATF : : i
TVM+Ansor 0.53 = 0.89 | 0.76 | 0.70
Productivity: P ~
def mcc(T: BasicType,

N: int, P: int, Q: int, K: int, R: int : :
@mdh (inpfimg=Buffer[T, [N, (2 * P) + R -1, (2 * Q) + S -1, C11B)

return (
out view[T](...),

Higher Performance than vendor
libraries; Highest Portability;

img=[lambda n, p, 9, k, ¥, s, c:
(2 *p) +r, (2 *qg)+s, c)l,

Productive, by capturing buffer
sizes in its type system

15

Experimental Results

Further Case Studies:

GPU: PPCG PPCG+ATF Hand Optimized (cuBLAS, cuDNN
1 OURs B TVvm 0 0 | O p_ : ()
CPU: | [Piuto | [DPluto+ATF || [JHand Optimized (oneMKL, oneDNN, EKR) |
NVIDIA Ampere GPU Intel Skylake CPU
Dot MatVec Dot MatVec
10
N ©
< <
= 2 : mlm M

Speedup

0.4

Inp. 1 ~ lnp. 2 Inp. 1 Inp. 2
MatMul MatMulAT bMatMul

. Inp. 1 Inp. 2
MatMul MatMulAT

Speedup

MCC MCC

Speedup

‘not available
‘not available

‘not available
‘not available

Inp. 1 Inp. 1 ~ Inp. 2

Deep Learning Deep Learning

MDH+ATF achieve similar PPP advantages for these studies

Experimental Results

Why does MDH+ATF achieves such PPP ?

Performance: Portability:

R —

R R

- Exploits algebraic high-level !

information (reductions operators) | i algebraic properties of computations
- Rich optimization space (data layouts, - Auto-tuning—friendly optimization
block parallelization, ...) h H space

R R N

I Optimization driven by common

Productivity:
S MDH+ATF leverages
_ . |
- User-facing language designed to be algebraic properties of Al

algebraically uniform & minimalistic & . :
computations for aggressive,

structured H

device-agnostic optimization and

- Formally grounded _ _ |
concise formulation of computations

e

Summary

* MDH+ATF combines three key goals — Performance & Portability & Productivity — as
compared to related approaches

e MDH formally introduces program representations on both:

* high level, for conveniently expressing — in one uniform formalism — the various kinds of
Al computations, agnostic from hardware and optimization details, while still capturing all
information relevant for generating high-performance program code

* low level, which allows uniformly reasoning — in the same formalism — about optimized
(de/re)-compositions of Al computations for the memory and core hierarchies of
contemporary parallel architectures (GPUs, CPUs, etc)

> lowers instances in its high-level representation to device- and data-optimized instances in
its low-level representation, in a formally sound manner, by introducing a generic search
space that is based on performance-critical parameters & auto-tuning

 ATF automatically identifies optimized values of performance-critical program parameters
that may be constrained

 Our experiments confirm that MDH+ATF often achieves higher Performance & Portability &
Productivity than popular state-of-practice approaches, including hand-optimized libraries
provided by vendors

18

MDH: WIP & Future Directions

High-Level Program Transformations (a.k.a. Fusion)

Many promising future directions (detailed discussion available here):
Sparse Computations
Domain-Specific HW

Low-Level Program Transformations (a.k.a. Fusion)

md_hom(g, (+,...,+)) omd_hom(f,(+,...,+))

—» md_hom(gof,(+,...,+))

We consider MDH to be a promising (formal) foundation for these goals,
e.g., due to its uniform representation and its captured algebraic information

https://arirasch.net/assets/files/phd_rasch.pdf

m— " = Universitit
Miunster

https://richardschulze.net
r.schulze@uni-muenster.de

Questions?

Schulze

https://arirasch.net
a.rasch@uni-muenster.de

https://atf-tuner.org

Code Code
Generation Optimization

mailto:r.schulze@uni-muenster.de
mailto:a.rasch@uni-muenster.de

