
Ari Rasch and Sergei Gorlatch

md_stencil: High-Performance Stencil Computations  
on CPU and GPU 

via Multi-Dimensional Homomorphisms

WIP 
Results



Goals

We aim to achieve for stencil computations in one approach three major goals:

Performance

competitive to 
best available 

solutions

Portability

functional and performance — 
over architectures and input/output 

characteristics

Productivity

easy to use & 
extensible



1. Transforming DSL programs to MDH representation.	

2. Generating auto-tunable OpenCL code from MDH representation.	

3. Auto-tuning OpenCL code for target device and input/output char.	

4. Executing auto-tuned OpenCL code. 

[1] Rasch, Schulze, Gorlatch, "Generating 
Portable High-Performance Code via Multi-
Dimensional Homomorphisms.”, PACT’19 

[2] Rasch, Haidl, Gorlatch, "ATF: A Generic 
Auto-Tuning Framework.”, HPCC’17 

[3] Rasch, Gorlatch, "ATF: A Generic, Directive-
Based Auto-Tuning Framework.”, CCPE’19 

[4] Rasch, Wrodarczyk, Schulze, Gorlatch, ”
OCAL: An Abstract ion for Host-Code 
Programming with OpenCL and CUDA.”, 
ICPADS’18 

[5] Rasch, Bigge, Wrodarczyk, Schulze, 
Gorlatch. "dOCAL: High-Level Distributed 
Programming with OpenCL and CUDA.”, 
JOS’19

MDH 
Representation

Auto-Tunable 
OpenCL Code

CPU-Optimized 
OpenCL Code

MDH-CG [1]
ATF [2,3]

GPU-Optimized 
OpenCL Code

ATF [2,3]

GPU

CPU
dOCAL [4,5]

dOCAL [4,5]

MDH Code Generation

 ②①

③
④ 

Stencil DSL

conv2d
(…) mcc(…)

map-n(
…)

…
j3d7pt(…)

Approach

This Work



1. in_view  → uniformly    

2. md_hom   → specifies  

3. out_view → uniformly    

Transformation: DSL → MDH

The MDH Representation relies on three higher-order functions (patterns): 

1. in_view( im, w )( p,q , r,s )( in[ p+r , q+s ], w[r,s] ) 

input  
image

weight  
matrix indices for 

input image 
indices for 

weight matrix 

data accesses

2. md_hom( *, (++,++,+,+) ) 

multiplie elements
in in and w

concatenate in  
dimensions p & q

sum in  
dimensions r & s3. out_view( out )( p,q )( out[ p,q ] ) 

indices for 
output image 

data 
accesses

output  
image 

Example:  Conv 2D → conv2d = out_view( … ) o md_hom( … ) o in_view( … )



Hardware 
‣ CPU: Intel Xeon E5 

‣ GPU: NVIDIA V100

TVM [7]: 2.75x on GPU for MCC
on their own real-world data set

from deep learning

Intel MKL-DNN / NVIDIA cuDNN:  
1.3x on CPU and 3.31x on GPU for MCC on 

TVM’s real-world data set

Artemis [8]: 0.98x-1.07x on GPU for 
conv2d and j3d7pt

[6] Hagedorn, et al., "High Performance Stencil Code Generation with Lift.”, CGO’18, (Best Paper Award) 
[7] Chen, et. al, "TVM: An Automated End-to-End Optimizing Compiler for Deep Learning”, OSDI’18 
[8] Rawat, et. al, "On Optimizing Complex Stencils on GPUs”, IPDPS’19

Preliminary Results

Speedups of md_stencil over well-performing 
machine- and hand-optimized approaches  

on CPU and GPU

Lift [6]: 1.9x-4.9x on CPU and 1.02x-2.34x on GPU for conv2d and  j3d7pt on Lift’s own data sets Best Paper
CGO’18



Ari Rasch
a.rasch@wwu.de

This presentation and recording belong to the authors.  
No distribution is allowed without the authors' permission.

WIP 

Results

Grateful for any feedback

Questions?



7

Appendix

1.Faster Auto-Tuning: exploit stencil-specific, high-level information.	

2.Further Stencils: generalized convolutions (capsule networks), etc.

We have two next major steps:



8

• Conv 2D transposed (conv2d-trans): 

md_hom( *, (++, ++, +,+) ) o in_view( in, weights )( p,q , r,s )( in[ 
q+s, p+r ], weights[r,s] ) 

• Jacobi 3D (j3d7pt):  

md_hom( j_f, (++,++,++) ) o in_view( in )( i,j,k )
( in[i,j,k],…,in[i+2,j+2,k+2] ), where j_f is the jacobi transition function 

• Multi-Channel Convolution (MCC): 

md_hom( *, (++,++,++,++,+,+,+) ) o in_view( in, weights )
( n,k,p,q,c,r,s )( in[ n,c,p+r,q+s], weights[ k,c,r,s] ) 

• 1x1 convolution (map-n): 
 
md_hom( f, (++,…,++) ) o in_view( A )( i_1,…,i_n )( A[i_1,…,i_n] ), 
where f is the transition function.

Appendix

Further Stencils:



“Machine Learning Systems are Stuck in a Rut” [HotOS’19]:

in_view( P,W )( n,x,y,c0 , kx,ky,ci )( P[ n,ci , s*x+kx,
                                      s*y+ky ], W[ci,c0 , kx,ky] ) 

parallelization and caching are extremely important for
performance [5].
The analogous computation for convolutional Cap-

sules sums weighted “pose” matrices in 3⇥3 convolution
patches to form “votes”:

8n,x ,�, co :V n,co
x,� =

’
kx

’
k�

’
ci

Pn,ci
sx+kx ,s�+k�

·W ci ,co
kx ,k�

(2)

where · now denotes matrix multiplication andV , P , and
W are 4-dimensional arrays of 4⇥4 matrices, or equiva-
lently, 6-dimensional arrays of scalars.
The following sections explain why ML frameworks

make it hard to run the Capsule computation e�ciently.

2 Compiling kernels is hard
Convolutional Capsule primitives can be implemented
reasonably e�ciently on CPU (see Table 1) but problems
arise on accelerators (e.g., GPU and TPU). Performance
on accelerators matters because almost all current ma-
chine learning research, and most training of production
models, uses them. The marginal cost to perform a partic-
ular ML training or large-scale inference workload in a
given time is much lower using accelerators than CPUs.
Accelerators have been very successful for machine

learning workloads because the computationally expen-
sive part of training tasks is written as dense linear al-
gebra over multi-dimensional arrays. Dense linear al-
gebra is regular compared to workloads that CPUs are
designed for, and comparatively easy to parallelize. Con-
sequently people have built increasingly complex acceler-
ators designed for regular parallel computation. Example
accelerator features include “warps”, blocks, and grids of
threads, very wide vector arithmetic units (ALUs), and
systolic array multipliers (MXUs). As we explain next,
it is hard to get good accelerator performance even on
these regular computations. While frequently occurring
computations receive attention and are well optimized,
the performance of non-standard computations like con-
volutional Capsules su�ers.

2.1 Compiling for accelerators
A major reason that it’s hard to get good performance
from regular computations is that the compiler has to
consider the memory system of an accelerator as well
as the ALUs. In an attempt to prevent data bottlenecks,
accelerators’ parallel capabilities have become tightly
coupled with the memory system. For example [6]: peak
ALU performance on GPUs requires “coalesced loads”
where all 32 threads of a warp simultaneously access
di�erent values in the same cache line; implementations
must be tailored to the sizes and strides implied by the
organization of memory banks; and e�cient programs
must make use of all values loaded in a single memory
access which may have large granularity.

def conv_capsule(float(B, H, W, CI, MH, MW) poses,
float(CI, CO, KH, KW, MH, MW) weights)
-> (votes) {

votes(b, h, w, co, m, n) +=!
poses(b, h*2 + r_kh, w*2 + r_kw, r_ci, m, r_k) *
weights(r_ci, co, r_kh, r_kw, r_k, n) where r_k in 0:4

}

Figure 2. Tensor Comprehensions Capsules Code

In general accelerator codemust perform explicit sched-
uling through the memory hierarchy rather than relying
on transparent multi-level caches. Often memory access
granularities require threads to cooperatively load each
others’ values and then exchange them3; so that code also
contains complex instruction scheduling across loop iter-
ations. While matching memory accesses to the parallel
ALUs results in good hardware utilization, any mismatch
can lead to orders of magnitude of performance slow-
down [6]. Avoiding this slowdown requires tuning kernel
parameters for e.g., padding, strides, and dimension lay-
out, for each generation of each accelerator.
For “stencil computations” like convolution in which

input values are reused by overlapping computation win-
dows, scheduling loads and stores to optimize memory
bandwidth is very challenging and has given rise to so-
phisticated tools such as Halide [7]. The data-reuse pat-
tern in a convolutional capsule has several additional
dimensions of complexity.

2.2 The monolithic kernel approach
Because of the di�culty of tuning parameters analyt-
ically, and the combinatorial number of choices, high-
performance back ends for accelerators expend a lot of
development e�ort on a small set of computational “ker-
nels” (generally, isolated loop nests), such as 2D convo-
lution and batch matrix multiplication, that dominate
performance pro�les of benchmarks. For each of these
kernels the back end maintainers spend hours or days
searching for the best algorithm and parameter settings
for a small representative set of operand shapes4, and
then use heuristics or auto-tuning to select one of these
pre-tuned implementations at runtime.

2.3 Compiling custom kernels
It is surprisingly common for machine learning papers
to propose new primitives that cannot be computed ef-
�ciently with existing kernels. Compilers like Tensor
Comprehensions (TC) [8] and PlaidML [9] have been de-
veloped to allow end-users to write such custom kernels,
and both provide DSLs with concise syntax that resem-
bles the math5, e.g., compare the TC implementation of
a capsule primitive in Figure 2 with Equation 2.

3Via so-called “warp shu�es”.
4We use “shape” to mean the cardinality of an array’s dimensions.
5Based on Einstein Notation.

178

conv2d-gen( … ) = 

md_hom( •, (++,++,++,++ , +,+,+) )

out_view( V )( n,x,y,c0 )( V[ n,c0,x,y ] ) 

Appendix Capsule  Networks


