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Parallel Programming in Today’s World

Parallel programming is hard:

Domain Scientist

]

+ domain
knowledge

- but lacks
hardware &
optimization
details

Focus of this thesis

Programming Models

Struggle with
simultaneously achieving
Performance & Portability & Productivity

Parallel Architectures

intel. nyioia.
.. Google

-+

B Microsoft

@%

potential

for high
performance

require
advanced
optimization



Challenges: Performance & Portability & Productivity

The Performance challenge:
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(NVIDIA V100) (Intel Xeon)

Runtime (lower is better) of unoptimized vs optimized matrix multiplication
on GPU (left) and CPU (right).

High Performance requires complex optimizations




Challenges: Performance & Portability & Productivity

The Portability challenge:
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Runtime (lower is better) of GPU/CPU-optimized matrix multiplication
on GPU (left) and CPU (right).




Challenges: Performance & Portability & Productivity

The Productivity challenge:

1 __kernel void MatMul( __global const float A[M][K] ,
2 __global const float B[K][N] ,
3 __global float C[M][N] )
4 1

5 int i = get_global_id(0);

6 int j = get_global_id(1);

7

8 for( int k=0 ; k<K ; ++k )

9 CIil[j1 += A[il[k] = BIKI[j1;

10 }

Naive OpenCL implementation of matrix multiplication

O O ONUl B~ W N R

10

11
12

13

14
15

__kernel void MatMul( /*x ... %/ )
{

const size t i wg 1.1 = get_group_id(2);
// ... 5 lines skipped

__private TYPE_TS res_pl[/...x/1[/*...%/1;
{
// ... 7 lines skipped
for (size_t p_iteration_1_1 = 0; p_iteration_1_1 < (2);
++p_iteration_1_1) {
for (size_t p_iteration_1_2 = 0; p_iteration_1_2 < (1)
; ++p_iteration_1_2) {
size_t p_iteration_r_1 = 0;
res_plp_step_1_1][((p_iteration_1_1) * 1 + 0)][(0)]I
p_step_1_2][((p_iteration_1_2) * 1 + Q)] = f(
al(((listep_1_1 x*x (32 / 1) + (((p_step_1_1 =%
(2) + (((p_iteration_1_1) x 1 +0)) / 1) *x 1
+ 1 wi 1.1 *x 1+ ((((p_iteration_1_1) *x 1 +
0)) %1))) /1) = (64 x 1) + i_wg_1_1 x 1 +
((((p_step_1_1 * (2) + (((p_iteration_1_1)
*x 1 +0)) /1) 1+ iwi1T1=x1+ ((((
p_iteration_1_1) * 1 + 0)) % 1))) % 1))) =*
1024 + (((l_step_r_1 *x (2 / 1) + (((
p_step_r_1 *x (1) + (((p_iteration_r_1) *x 1 +
0)) /1) =1+ iwir 11+ ((((
p_iteration_r_1) * 1 + 0)) % 1))) / 1) * (2
* 1) + iwg_r_1 x 1+ ((((p_step_r_1 x (1) +
(((p_iteration_r_1) = 1 + 0)) / 1) x 1 +
iwir_l =1+ ((((p_iteration_r_1) *x 1 + 0)
) % 1))) % 1)))]1,
// ... 107 lines skipped
}

Optimized OpenCL implementation of matrix multiplication

High Productivity requires automatic optimization




ontributions of this Thesis

This thesis introduces a novel, holistic approach to Generating

High-Level Program
Representation
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__private float res_prv = @,

for(int isq=1; i_sq <=
fm( int
res_prv

for(int i
for(int j

e

// store result
res_lcl[ WI_ID_1 ][ W

// combine the WIs'

{
if( WI_ID_2 < str
Fes 11T WIID 1 ![

1] stare os!
iF( WI_ID_2

esu
o)
it e ) L

} // end of for-loop j_sq
} 7/ end of for-loop i_sq
end of kernel

[Kernel void gemv_fst( _global floatk In matrix,
“global floatk in_vector,
“global floatk out_vector,

/7 private nemory for a WI's computation
/7 local memory for a WG's computation

local  float res_Lcll NUM_WI_1 ][ NUM_WI_2 1;
1/ dteration over P_sq blacks

1 j_sq <= NUM_SQ_2 ; ++j_sq ) {
1/ sequential computation on a Pl partition

res_prv 4= my_p_wi( i, j, 0 ) % my_|

in local memor,
m2] =

barrier( CLK_LOCAL_MEM_FENCE );

results in dimension x
for( int stride = NUW_WI_

barrier( CLK_LOCAL_MEM_FENCE );
}

sults in global memory
res_lcll WI_ID_1 1[0];

barrier( CLK_LOCAL_MEM_FENCE );

NUM_SQ_1 ; ++i_sq ) {

T_SIZE_L ; ++i

Domain Scientist

Low-Level Program
Representation

Focus of this thesis

Programming Models

A NVIDIA

CUDA.

Parallel Architectures

B Microsoft

Intel
Google

NVIDIA.

& Optimizing & Executing code:

Executable
Program Code

[Kernel void gemv_fst( _global floatk In matrix,
“global floatk in_vector,
“global floatk out_vector,

// private memory for a WI's computation
__private float res_prv = @,

/7 local memory for a WG's computatio
ocal” "Tlont res Tl N NE A 1T NI 15

// iteration over P_sq blocks
for( int i_sq = 1 ; i_sq <= NUW_SQ_1 ; ++i_sq ) {
1 j_sq <= NUM_SQ_2 ; ++j_sq )

11 sequential computation on o Pwi partition
for( int i T_SIZE_L ; ++i

WI_PART_SIZE 2 ; ++j )
il 3, 3, 105

res_prv;

2 /2 ; stride > @ ; stride /= 2)

WI_ID_2 ] += res_lcll WI_ID_1 ][ WI_ID_2 + stride J;|

(1)

WI_PART_SIZE_2 ; ++j )
resprv 42 mypd( 1, 57 00w mypi( 1,

// store result in local memor:

res_lcl[ WI_ID_1 ][ WI_ID_2 ] = res_prv;

barrier( CLK_LOCAL_MEM_FENCE );
// combine the WIs' results in dimension x
for( int stride = NUM_WI_2 / 2 ; stride > 0 ;

1F( WI_ID 2 < str
barrier( CLK_LOCAL_MEM_FENCE );
}

7/ store Mos! results in global nenory
iF(WIID2 =0 )
) =

nres e

res_lcll WI_ID_1 1[0];
barrier( CLK_LOCAL_MEM_FENCE );
} /7 end of for-loop j_sq

} // end of for-loop i_sq
end of kernel

WI_ ide)
res_lcUl WI_ID_1 [ WI_ID_2 ] += res_lcl[ WI_ID_1 ][ WI_ID_2 + stride 1;

3t k:‘: e
ﬁ o

nvVIiDA
cuDa

{ P B 2 1 e ettt 20 st

v

i1

stride /= 2)

OpenCL

Generation

[TOPLAS’24,
’18]

IJPP

PACT’19,

Optimization
[TACO’21, CCPE’19,
HPCC’17]

v

Host + Program

Code

(3)

Execution

1

[Kernet void gemv_fst(

// private memory for

umm Tloats In_matrix,
lobal float* in_vector,
3lobal floatw ouf vector,

a WI's computation

__private float res_prv = 0.0f;

/1 local memory for a
float res_lc

// iteration over P_sq

for(
for(int j =

// store result in
res_lcll WI_I0_1 ]

// combine the WIs'
=NUMWI_2 / 2 ; stride > 0 ;

for( int stride

{
if( WI_ID 2 < str.

res_Tcl WI_ID_ s ][ WI_ID_2 ] += res_lcl[ WI_ID_1 ][ WI_ID_2 + stride ;

barrier( CLK_LOC
}

// store WGs' resu
if( WI_ID_2 )
my_res( i_sq )

barrier( CLK_LOCAL_MEM_FENCE );

WG's computation
LLNUM_WI_1 1T NUM_WI_2 ;

blocks
1sq <= NUMSO_L 5 ++i_sq ) {
j_sq <= NUM_SQ_2 ; ++j_sq )

res prvkmypwl( 1,3, 0 ) % mypwil i, 3, 1);

local memory

[WI_ID_2 ] = res_prv;

results in dimension x

AL_MEM_FENCE );

lts in global memory

res_lcl[ WI_ID_1 ][0];

barrier( CLK_LOCAL_MEM_FENCE );

} // end of for-loop j_sa
} // end of for-loop 1_sq

end of kernel

{

stride /= 2)

[JOS’19,

ICPADS 18]

The ultimate goal of MDH+ATF+HCA is to simultaneously achieve

Performance & Portability & Productivity




utline

is talk(/thesis) is structured into three main parts:

High-Level Program Low-Level Program Executable Host + Program
Representation Representation Program Code Code

[Kernel void gemv_fst( _global Tloats In_matrix, [Kernel void gemv_fst( _global floats In_matrix, : S [Kernel void gemv_fst( _global Tloats In_matrix,
global floatx in_vector, global floatx in_vector, global floatx in_vector,
“global floatx out_vector, “global floatx out_vector, global floatk out_vector,
I I

nvila I
11 private memary for o W1's comutation 1 private menory for o Wi.s conputation
Zprivate float res_prv = 0.0f

_private float res_prv = 0.0f

fe cun // private memory for a WI's computation
e e o el o%of

// local memory for a WG's computation // local memory for 3 WG's computatio = // local memory for a WG's computation
local  float res_Lcll NUM_WI_1 1T NUM_WI_2 1; ocal | float res_tell NUMME-1 1T NUM_ME_2 1; e “local float res_Lcll NUM_WI_1 1T NUM WI_2 1;
// iteration over P_sq blocks // iteration over P. 4/ dreration over P_sq blocks
For( int i_sq = 1 ; i_sq <= NUM_SQ_1 ; ++i_sq ) { for( int isq =1 ++isq) { S VR i e q isq
for( int j_sq = 1; j_sq <= NOM_S0_2 ; ++j_sq ) { NOM_S 5w s
0.0f;

for( int is UM S0_1 ; ++i_sq ) {
= for( int j_sq 5 +viisa ) { w1 for( nt 5 sa = 15 7i_sq <= NOW_SQ_2 ; ++j_sq ) {
res_prv = 0.0f res_prv = res_prv = 0.07;
17 sequential conputation on a P ui partition 7/ sequential computation on a Pl partition {/ sequentisl computation on a Pi partition
( 1 WI_PART_SIZE_1 ; ) for( int =1 = WI_PART SIZE 1 ; ++i ) for( int <= WI_PART_SIZE_1 ; ++i )
for(int =13 ) <= WLPARTSTZE S 1 443 ) for(int 3 = 1 UL PART STZE_3 | +4) )
res_prv += my_pwi( i, 3, @ )k my_pwi( 1, 3, 1);

J for( int j I_PART_SIZE 2 ; ++j )
Tesopry 4 myp (1,37 0 ) 4 My il 1, 0, 1

Tesipry +2 my pd( 1, 37 0 s my el L 3, 10;

/7 store result in local memory // store result in local memor: /7 store result in local memo;
res_LcU[ WI_ID_1 ][ WI_ID_2 ] = res_prv; res_LcL[ WI_ID_1 [ WI_ID_2 ] = res_prv;

ry
res_LcU[ WI_ID_1 ][ WI_ID_2 ] = res_prv;

barrier( CLK_LOCAL_MEM_FENCE

barrier( CLK_LOCAL_MEM_FENCE );

barrier( CLK_LOCAL_MEM_FENCE );
1/ conbine the WIs: results in dinension x

for( int stride = NUWWI_2 / 2 ; stride > @ ; stride /= 2)

1/ combine the WIs. results in dinension x // combine the WIs' results in dimension x
for( int stride = NUM_WI_2 / 2 ; stride > 0 ; stride /= 2)

for( int stride = NUW_WI_2 / 2 ; stride > @ ; stride /= 2)

if( WI_ID_2 < strid

{
e) if( WI_ID_2 < strid
res_TcUl WI_TO_1 ][ WI_ID_2 ] += res_lcl[ WI_ID_1 ][ WI_ID_2 + stride ];

res_TcUl WI_TD_1 i WI_ID_2 ] += res_lcl[ WI_ID_1 ][ WI_ID_2 + stride ;|

{
1F( WI_ID_2 < stride)
res_TcUl WI_TO_1 ][ WI_ID_2 ] += res_lcl[ WI_ID_1 ][ WI_ID_2 + stride 1;

OpenCL

barrier( CLK_LOCAL_MEM_FENCE );
}

barrier( CLK_LOCAL_MEM_FENCE );
}

barrier( CLK_LOCAL_MEM_FENCE );
}

// store Wes' results in global memory
IF(WIID2 =0 )
my_res("i_sq ) = res_lcll WI_ID_1 10];

11 store Wes! results in global memory
if(w
my,rest e L res et w101

// store WGs' results in global memory
» I(WLID2 =0 )
my_res(i_sq ) = res_lcll WI_10_1 ][0];

barrier( CLK_LOCAL_MEM_FENCE

barrier( CLK_LOCAL_WEM_FENCE );

barrier( CLK_LOCAL_MEM_FENCE );
} // end of for-loop j_sq

} // end of for-loop j_sa o e } // end of for-loop j_sa
} /1 end ot for-loop 153 } // end of for-loop 153 e } 7/ end o for-toop 1_sa
b7/ end of kern end of kernel - b7/ end of kernel

Generation timization“” Execution
[TOPLAS’ 24, [TACO’21, CCPE’19, [JOS’19,
PACT’19, IJPP’18] HPCC’17] ICPADS’ 18]

1. Part: How to generate automatically 3. Part: How to execute

optimizable (auto-tunable) code?

code on (distr.) multi-dev.
systems?

2. Part: How to optimize
(auto-tune) code?

— Interface Kinds for MDH+ATF+HCA are outlined at the end of talk




Code Generation via MDH

Overview  Getting Started Code Examples Publications  Citations  Contact

Multi-Dimensional Homomorphisms (MDH)
/\/\ D I—I An Algebraic Approach Toward Performance & Portability & Productivity

for Data-Parallel Computations

Overview

The approach of Multi-Dimensional Homomorphisms (MDH) is an algebraic formalism for systematically reasoning about de-

composition and re-composition strategies of data-parallel computations (such as linear algebra routines and stencil

computations) for the memory and core hierarchies of state-of-the-art parallel architectures (GPUs, multi-core CPU, multi-

device and multi-node systems, etc).
The MDH approach (formally) introduces:

1. High-Level Program Representation (Contribution 1) that enables the user conveniently implementing data-parallel
computations, agnostic from hardware and optimization details;

2. Low-Level Program Representation (Contribution 2) that expresses device- and data-optimized de- and re-composition

strategies of computations;

3. Lowering Process (Contribution 3) that fully automatically lowers a data-parallel computation expressed in its high-level

program representation to an optimized instance in its low-level representation, based on concepts from automatic
performance optimization (a.k.a. auto-tuning), using the Auto-Tuning Framework (ATF).

The MDH's low-level representation is designed such that Code Generation from it (e.g., in OpenMP for CPUs, CUDA for
NVIDIA GPUs, or OpenCL for multiple kinds of architectures) becomes straightforward.

[' | - Contribution (1) Contribution (2) - —
Lnes | Opents
el e~ Contribution (3) W =
" -3 . ’ ¢ - o ) |
R D il | ] om ]
n'j:13-4 } q WL - - ot |
- A ReP [, | REP |—J e
Quantunm L R v l =Y ’1

< hasistry

} ——__—_‘.. ' Automatized r R e ’l = |

' (via Auto-Tuning)
User-Definad Straightforward

Our Experiments report encouraging results on GPUs and CPUs for MDH as compared to state-of-practice approaches,
including NVIDIA cuBLAS/cuDNN and Intel oneMKL/oneDNN which are hand-optimized libraries provided by vendors.

ACM TOPLAS 2024

https://mdh-lang.org

(De/Re)-Composition of Data-Parallel Computations via
Multi-Dimensional Homomorphisms

ARI RASCH, University of Muenster, Germany

Data-parallel computations, such as linear algebra routines and stencil computations, constitute one of the most
relevant classes in parallel computing, e.g., due to their importance for deep learning. Efficiently de-composing
such computations for the memory and core hierarchies of modern architectures and re-composing the
computed intermediate results back to the final result—we say (de/re)-composition for short—is key to achieve
high performance for these computations on, e.g., GPU and CPU. Current high-level approaches to generating
data-parallel code are often restricted to a particular subclass of data-parallel computations and architectures
(e.g., only linear algebra routines on only GPU or only stencil computations), and/or the approaches rely
on a user-guided optimization process for a well-performing (de/re)-composition of computations, which is
complex and error prone for the user.

We formally introduce a systematic (de/re)-composition approach, based on the algebraic formalism of
Multi-Dimensional Homomorphisms (MDHs). Our approach is designed as general enough to be applicable to
a wide range of data-parallel computations and for various kinds of target parallel architectures. To efficiently
target the deep and complex memory and core hierarchies of contemporary architectures, we exploit our
introduced (de/re)-composition approach for a correct-by-construction, parametrized cache blocking, and
parallelization strategy. We show that our approach is powerful enough to express, in the same formalism, the
(de/re)-composition strategies of different classes of state-of-the-art approaches (scheduling-based, polyhedral,
etc.), and we demonstrate that the parameters of our strategies enable systematically generating code that
can be fully automatically optimized (auto-tuned) for the particular target architecture and characteristics of
the input and output data (e.g., their sizes and memory layouts). Particularly, our experiments confirm that
via auto-tuning, we achieve higher performance than state-of-the-art approaches, including hand-optimized
solutions provided by vendors (such as NVIDIA cuBLAS/cuDNN and Intel oneMKL/oneDNN), on real-world
datasets and for a variety of data-parallel computations, including linear algebra routines, stencil and quantum
chemistry computations, data mining algorithms, and computations that recently gained high attention due to
their relevance for deep learning.

CCS Concepts: « Computing methodologies — Parallel computing methodologies; Machine learning;
« Theory of computation — Program semantics; « Software and its engineering — Compilers;

Additional Key Words and Phrases: Code generation, data parallelism, auto-tuning, GPU, CPU, OpenMP,
CUDA, OpenCL, linear algebra, stencils computation, quantum chemistry, data mining, deep learning

A full version of this article is provided by Rasch [2024], which presents our novel concepts with all of their formal details. In
contrast to the full version, this article relies on a simplified formal foundation for better illustration and easier understanding.
We often refer the interested reader to Rasch [2024] for formal details that should not be required for understanding the
basic ideas and concepts of our approach.

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—project PPP-DL
(470527619).

Author’s Contact Information: Ari Rasch (Corresponding author), University of Muenster, Muenster, Germany; e-mail:
a.rasch@uni-muenster.de.




Goal of MDH

MDNH is a (formal) framework for expressing & optimizing data-parallel computations:

1.

: Contribution (1) Contribution (2)
Linear : ; OpenMP
Algebra Contribution (3)
. 5 CUDA
Data Stencils
Mining

OpenCL

Quantum
Chemistry

Automatized
T (via Auto-Tuning) T
User Defined Straightforward

Contribution 1 (HL-REP): defines data parallelism, based on common algebraic properties of computations
& introduces higher-order functions for expressing these computations, agnostic from hardware and
optimization details while still capturing high-level information relevant for generating high-performing code

Contribution 2 (LL-REP): allows expressing and reasoning about optimizations for the memory and core
hierarchies of contemporary parallel architectures & generalizes these optimizations to apply to arbitrary
combinations of data-parallel computations and architectures

Contribution 3 (—): introduces a structured optimization process — for arbitrary combinations of data-
parallel computations and parallel architectures — that allows fully automatic optimization (auto-tuning)

10



MDH: High-Level Representation

Goals:

1.

Uniform:
should be able to express any kind of data-parallel computation, without relying on

domain-specific building blocks, extensions, etc.

Minimalistic:
should rely on less building blocks to keep language small and simple

Structured:
avoiding compositions and nestings of building blocks as much as possible,

thereby further contributing to the usability and simplicity of our language

MatVec TETYPEILKEN> . out view<T>( w:(i,k)—(i) ) o
md hom<I,K>(x*, (#,+)) o

inp view<T,T>( M:(i,k)—(i,k) ,v:({i,k)~(k) )

MDH High-Level Representation of MatVec
(discussed later)

11



MDH: High-Level Representation

Overview:

Matrix Matrix inp_VieW md_hom Out_VieW Matrix Matrix

Vector Vector | | > I > I > Vector Vector
Scalar .. « | Scalar .. A A Scalar .. « | Scalar ..

X / X /

Domain-Specific Internal ; Domain-Specific

Data Representation Data Representation § Data Representation
transforms transforms
domain-specific data representation internal data representation
to internal representation to domain-specific representation
computes

data parallel computation

Our high-level representation defines data-parallel computations as
Multi-Dimensional Homomorphisms (MDH)
and it expresses data-parallel computations using exactly
three straightforwardly composed higher-order functions only

12



MDH: High-Level Representation

Example: MatVec expressed in MDH

MatVec TETPEILKEN> . ot view<T>( w: (i,k)~—(i) ) o NOH
md hom<I,K>(*, (#,+)) o

inp view<T,T>( M:(i,k)~(i,k) ,v:(i,k)—~(k) )

MDH High-Level Representation of MatVec

What is happening here: :

for( int i=0 ; i < I ; ++1i )

: : _ for( int k=0 ; k < K ; ++k )
e 1np_view captures the accesses to input data

void MatVec( TI[I M, TII v, T[] w )

Wil += MIZNIKD * VIKI;

¥ >
 md_hom expresses the data-parallel computation MatVec in C++ d

« out_view captures the accesses to output data

"We can generate such MDH expressions also automatically from straightforward (annotated) code in Python or C

13



MDH: High-Level Representation

inp_view out_view
md_hom H f ‘ @1 ‘ @2 ‘ ®3 ‘ ®4 Views A ‘ B C
Dot x| + Dot ® - ® ® ~ ® ® ~ 0 md hom [ £ 1@ | @ @] e e |e|er|es|e|ew
MatVec || * | # | + MatVec (i,k) = (i,k) (i,k) —» (k) (i,k) » (1) Conv2D R e
MatMul || * | + | + | + MatMul | (i,j,k) ~ (i,k) (i,j,8) ~ (k,3) (,3,0 - (G, MCC N TN TU [TI TR I (I
MatMul® || * | #+ | + | + MatMul® || (i,j,k) =~ (k,i) (i,j,k) » (j,k) (i,j,k) » (j,1) MCC_Capsule || * | + | # | # | + | + | + | + | + | # +
bMatMul || * | #+ | +#+ | + + bMatMul || (b,i,j,k) » (b,i,k) | (b,i,j,k) » (b,k,j) | (b,i,j,k) » (b,i,])
1) Linear Algebra Routines inp_view out_view
Views I \ F 0
Conv2D (p,q,r,s) ~ (ptr,q+s) (p,q,r,8) ~ (r,s) (p,q,r,s) » (p,q
MCC (n,p,...) +~ (n,ptr,g+s,c) (n,p,...) +~ (k,r,s,c) (n,p,...) +~ (n,p,q,k)
MCC_Capsule || (n,p,...) +~ (n,pt+r,q+s,c,mi,mk) | (n,p,...) +~ (k,r,s,c,mk,mj) | (n,p,...) +~ (n,p,q,k,mi,mj)
2) Convolution Stencils
inp_view out_view
mdhom [ f|® |...|® |®  Views A | B C
cesD(m) [+ [+ [ ... | #+ [ + I1 (a,...,g) ~ (g,d,a,b) | (a,...,8) ~ (e,f,g,c) | (a,...,g) ~ (a,...,f)
I2 (a,...,g) » (g,d,a,c) | (a,...,8) » (e,f,g,b) | (a,...,8) » (a,...,f)
3) Quantum Chemistry
inp_view out_view
md_hom H f ‘ ®1 ‘ ®9 ‘ ®3 Views I 0
JacobilD || Jip | + JacobilD || (i1) +~ (i1+0) , (i1) » (i1+1) , ... | (A1) » (1D
. . . Jacobi2D || Jop | H#+ | H Jacobi2D || (i1,i2) ~ (i1+0,i2+1) , ... (i1,i2) ~ (i1,i2)
, 10p-view out-view Jacobi3D || Jap | # | + | + Jacobi3D || (il,i2,i3) = (i140,i2+1,i3+1) , ... | (i1,i2,i3) ~ (il,i2,i3)
md_hom H f ‘@1‘ ®9 Views N ‘ E M
PRL H wght ‘ + ‘maXPRL PRL H (1,j) » D ‘ (i,3) » () ‘ (1,3) » (D 4) Jacobi Stencils
5) Probabilistic Record Linkage
inp_view out_view
md_hom H £ ‘ ®1 ‘ ®9 Views Elems ‘ Bins Out
inp_view out_view Histo fuisto | + | Histo (e,b) = (&) | (e,b) = (b) | (e,b) = (b)
md_hom H f ‘ &1 Views 1 01 | 02 GenHisto f ® | + GenHisto || (e,b) — (e) | (e,b) —» (b) | (e,b) ~ (b)
map (f) f ++ map (f) (1) » (1) | (1) » (1)
reduce (&) id ® reduce (&) 1) » @[ » 0 6) Histogram
reduce(®,®) || (x) » (x,x) | (&,®) reduce(®,®) || (1) » (1) | (1) » O 1) » O
7) Map/Reduce Patterns inp_view out_view
md_hom || £ | ®1 | ® Views A Out
scan(®) | id | +prefix-sun(®) scan(®) || (1) —» (1) (1) —» (1D
MBBS id | *prefix-sun(+) | + MBBS G, » G, | G, - ()

8) Prefix Sum Computations

The MDH high-level representation is capable of expressing

various kinds of data-parallel computations
(with significantly different characteristics)




MDH: Low-Level Representation

Goals:

1. Expressing a hardware- & data-optimized de-composition and re-composition of data-parallel
computations, based on an Abstract System Model (ASM)

2. Being straightforwardly transformable to executable program code (e.g., in OpenMP, CUDA,
and OpenCL) — major optimization decisions explicitly expressed in low-level representation

A inpiviewl
> a
| (HM X) » 1 .H_éHM’y)‘ ........................................
Piel02)ng LT phel0 g o D0 P[0, . .
— w: HM[1] — w: HM[1] — M: HM[1,2] {2} — M: HM[1,2] Assignment of tile
a3 " vi MDD 7 ve EMOL] computations to
& (COR,) - & (COR.) (om0 3 , (CORy) core h1erarcI.1y
1 12; 2 1 2 of target device
p?E[O,S)NO < pge[0716)N0 pfe[078)N() "':,‘.'.':""P p§€[0;16)N0
— w: HM[1] = w: HM[1] — M: HM[1,2] {4} — M: HM[1,2]
an 7 v: HM[1] 7 v: HM[1]
.- /‘/. "—"_,"'::--\‘. A . u
o (L1s®) INCERD eI I (D) L ALY Assignment of tile
1 Py 2 1 2 : .
{10; : computations to
p3e[0,32)n, 7 p3e[0,64), p3e[0,32)n, .. e DRE[0,64) g Treeeereeeieeen P )
- w: L1[1] - w: L1[1] — M: HM[1,2] 6 — M: HM[1,2] memory hlerarcl'hy
5y - v: L1[1] v: L1[1] of target device
8}
Taﬁzﬁ,pé | pips | pips> S, ¢a<$ﬁ,p§ | p1.03 | p1.P3>
f f v
— < (1,2) , (3,4) , (5,6) >
— M: HM[1,2] , v: L1[1]
— w: L1[1]

<
<
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MDH: Low-Level Representation

Excursion: visualizing low-level instances
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Scalar Computation

M Vv
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The (structured) design of our Low-Level Representation allows

uniformly visualizing optimizations

v

De-Composition
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MDH: Lowering: High Level = Low-Level

Based on (formally defined) performance-critical parameters, for a structured optimization process:

No. | Name Range Description
0 | #PRT MDH-LVL — N number of parts
D1 | 0}-ord MDH-LVL <> MDH-LVL de-composition order
D2 | <>|-ass MDH-LVL <> ASM-LVL ASM assignment (de-composition)
D3 | J-mem**®> | MDH-LVL — MR memory regions of input BUFs (ib)
D4 | oy MDH-LVL — [1,...,DiE]s | memory layouts of input BUFs (ib) )
S1 | 0f-ord MDH-LVL <> MDH-LVL scalar function order
S2 | < foass MDH-LVL < ASM-LVL ASM assignment (scalar function) € :
$3 | ft-mem*®> | MR memory region of input BUF (ib)
S4 ]fff’;em [1,....D]s memory layout of input BUF (ib)
S5 | f1-mem<®> | MR memory region of output BUF (ob)

<
S6 Jfﬁf);em [1,...,D%]s memory layout of output BUF (ob)
R1 | 01-ord MDH-LVL <> MDH-LVL re-composition order
R2 | <>1-ass MDH-LVL <> ASM-LVL ASM assignment (re-composition)«
R3 | 1-mem*®® | MDH-LVL — MR memory regions of output BUFs (ob)
R4 af_on?gm MDH-LVL — [1,...,D%]s | memory layouts of output BUFs (ob)

Table 1. Tuning parameters of our low-level expressions

exploiting core hierarchy
(parallelization)

S

e S -

exploiting memotry hierarchy
(data movements)

R — R E—

Our parameters
unify & generalize & combine

well-proven optimizations

(e.g., tiling, data movements,

and parallelization)

We use our Auto-Tuning Framework (ATF) to automatically determine optimized values of parameters

17



MDH: Experimental Results

MDH is experimentally evaluated in terms of Performance & Portability & Productivity:

Competitors:

1. Scheduling Approach:
- Apache TVM [1] (GPU & CPU)
2. Polyhedral Compilers:
- PPCG [2] (GPU)
- Pluto [3] (CPU)
3. Functional Approach:
- Lift [4] (GPU & CPU)
4. Domain-Specific Libraries:
- NVIDIA cuBLAS & cuDNN (GPU)
- Intel oneMKL & oneDNN (CPU)

[1] Chen et al., “TVM: An Automated End-to-End Optimizing Compiler for Deep
Learning”, OSDI’18

[2] Verdoolaege et al., “Polyhedral Parallel Code Generation for CUDA”, TACO’13

[3] Bondhugula et al., “PLuTo: A Practical and Fully Automatic Polyhedral
Program Optimization System”, PLDI’'08

[4] Steuwer et al., “Generating Performance Portable Code using Rewrite Rules”,
ICFP’15

Case Studies:

1.

Linear Algebra Routines:

- Matrix Multiplication (MatMul)
- Matrix-Vector Multiplication (MatVec)

. Stencil Computations:

- Jacobi Computation (JacobilD)

- Gaussian Convolution (Conv2D)

. Quantum Chemistry:

- Coupled Cluster (CCSD(T))

Data Mining:
- Probabilistic Record Linkage (PRL)

Deep Learning:

- Multi-Channel Convolution (MCC)
- Capsule-Style Convolution (MCC_Capsule)

& NVIDIA.

18



MDH: Experimental Results

Performance Evaluation: (via runtime comparison)

NVIDIA Ampere GPU

Deep ResNet-50 VGG-16 MobileNet
Lealw1ing Training Inference Training Inference Training i Inference
MCC MatMul MCC MatMul MCC MatMul MCC MatMul MCC MCC
TVM+Ansor 1.00 1.26 1.05 2.22 0.93 1.42 0.88 1.14 0.94 1.00
PPCG 3456.16: 8.26 - 7.89 :1661.14: 7.06 5.77 5.08 2254.67 7.55
PPCG+ATF 3.28 2.58 13.76 5.44 4.26 3.92 9.46 3.73 3.31 10.71
CUuDNN 0.92 - 1.85 - 1.22 - 1.94 - 1.81 2.14
CUBLAS - 1.58 - 2.67 - 0.93 - 1.04 - -
CUBLASEX - 1.47 - 2.56 - 0.92 - 1.02 - -
CUuBLASLt - 1.26 - 1.22 - 0.91 - 1.01 - -
Intel Skylake CPU
Deep ResNet-50 VGG-16 MobileNet
Lear11ing Training Inference Training Inference Training :Inference
MCC MatMul MCC MatMul MCC MatMul MCC MatMul MCC MCC
TVM+Ansor 1.53 1.05 1.14 1.20 1.97 1.14 2.38 1.27 3.01 1.40
Pluto 355.81 i 49.57 | 364.43 | 13.93 : 130.80 : 93.21 | 186.25 | 36.30 152.14 75.37
Pluto+ATF 13.08 19.70 | 170.69 6.57 3.11 6.29 53.61 8.29 3.50 25.41
oneDNN 0.39 - 5.07 - 1.22 - 9.01 - 1.05 4.20
oneMKL - 0.44 - 1.09 - 0.88 - 0.53 - -
oneMKL (JIT) - 6.43 - 8.33 - 27.09 - 9.78 - -

NVIDIA. NVCCVS’VVRTC
MDH speedup over é

* TVM: 0.88x — 2.22x

e PPCG: 2.58x - 13.76x%

e (CuBLAS/cuDNN: 0.91x - 2.67x)

MDH speedup over

e TVM: 1.05 3.01x

* Pluto: 6.29x — 364.43x
® (oneMKL/oneDNN: 0.39x - 9.01x)

Significantly higher speedups for other case studies,
e.q., >170x over TVM on GPU already for straightforward dot products
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MDH: Experimental Results

Portability Evaluation: (via Pennycook Metric [6])

Pennycook Metric

Deep | | ResNet-50 . ... V6616 .. . MobileNet
Learning _____________ Training Inference Training Inference Training EInference
MCC | MatMul | MCC | MatMul i MCC  MatMul i MCC | MatMul & MCC | MCC
MDH+ATF .67 | ©0.76 | ©0.91 = 1.00 . ©0.98 .95 | 0.97 . ©0.68 = ©0.98 . 1.00
TVM+Ansor 0.53 | ©0.62 | .89 = 0.59 | ©0.76 @ 0.81 = 0.70 | ©0.61 | 0.54 | 0.75

The other related approaches achieve lowest portability — of “0.00” — only,
because they are designed for particular architectures and/or application classes only

[6] Pennycook et al., “Implications of a Metric for Performance Portability”, FGCS’19
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Productivity Evaluation: (via intuitive argumentation)

MDH: Experimental Results

1 | cublasSgemv( /*x ... *x/ );

Listing 4. cuBLAS program expressing Matrix-Vector Multiplication (MatVec)

1 [for( int 1 = @ ; i < M ; ++i )
2 for( int k = 0 ; k < K ; ++k )
3 wli]l += M[il[k] * v[k];

Listing 2. PPCG/Pluto program expressing Matrix-Vector Multiplication (MatVec)’

1
2 M
3 %
4
5 k
6 w
7
8
9 )
10

def MatVec (I, K):

return [M, v, w]

te.placeholder ((I, K), name='M', dtype='float32"')
te.placeholder ((K,), name='v', dtype='float32')

te.reduce_axis((@, K), name='k")
te.compute(

(I,),
lambda i: te.sum(M[i, k] * v[k], axis=k)

Listing 1. TVM program expressing Matrix-Vector Multiplication (MatVec)

nFun(n => nFun(m =>
fun(matrix: [[floatlnlm => fun(xs: [float]n =>
matrix :>> map(fun(row =>
zip(xs, row) :>> map(x) :>> reduce(+, 0)

)) D) )

Gl W= W DN =

Listing 3. Lift program expressing Matrix-Vector Multiplication (MatVec)

TMDH can also take (annotated) C code as input [IMPACT’20]
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MDH: Summary

* MDH combines three key goals — Performance & Portability & Productivity — as compared
to related approaches

* For this, MDH formally introduces program representations on both:

* high level, for conveniently expressing — in one uniform formalism — the various kinds of
data-parallel computations, agnostic from hardware and optimization details, while still
capturing all information relevant for generating high-performance program code

* low level, which allows uniformly reasoning — in the same formalism — about optimized
(de/re)-compositions of data-parallel computations for the memory and core hierarchies of
contemporary parallel architectures (GPUs, CPUs, etc)

* MDH lowers instances in its high-level representation to device- and data-optimized instances
In its low-level representation, in a formally sound manner, by introducing a generic search
space that is based on performance-critical parameters & auto-tuning

e Our experiments confirm that MDH often achieves higher Performance & Portability &
Productivity than popular state-of-practice approaches, including hand-optimized libraries
provided by vendors

22



MDH: Summary

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

Treealg 190 11 12
Y.

9 10 11 12)
3 14 15 16

1 2 3 4

5 6 7 8
h(lg 10 11 12|

13 14 15 16

Fig. 10. MDH property recursively applied to a two-dimensional example computation

That was a very quick,

Definition 3 (Multi-Dimensional Homomorphism). Let T™, T%T ¢ TYPE be two arbitrary scalar

1 D
types, D € N a natural number, and =>}4, . . ., =9 : MDA-IDX-SETs — MDA-IDX-SETs functions
on MDA index sets. Let further +, := w<T"[Dld> ¢ cg<id|T™[D|d> denote concatenation (Defini-

tion 1) in dimension d € [1, D]y on D-dimensional MDAs that have scalar type T™".
A function

L,...,IpeMDA-IDX-SETs> . ~-INP ouT _L MDA D vpa
=i ips TV [ Lo Ip] = T [=a(h) s -0 =ipa(ip) ]
is a Multi-Dimensional Homomorphism (MDH) that has input scalar type T™", output scalar type
1 D
T, dimensionality D, and index set functions =>\os, . . . , =wos, iff for each d € [1, D]y, there exists

d MDA | -OUT
a combine operator &4 € CO<=wlT" IP14> (Definition 2), such that for any concatenated input

MDA a;+4 a; in dimension d, the homomorphic property is satisfied:
h( aHg Qg ) = h(al) @d h(az)

INP —-OUT d vpA
We denote the type of MDHs concisely as MDH<T 7 [21(Swn)actiong>,

@) h(@ 3D nah n(s 6 7 8] h([9 10]) n(t] ne2

informal dive!

N := (Ny,..., Np) € NP a sequence of natural numbers.

following signature:

as BUF index sets. Analogously to Notation 1, we write b[ iy, .
a too heavy usage of parentheses.

Definition 5 (Buffer). Let T € TYPE be an arbitrary scalar type, D € N a natural number’, and

A Buffer (BUF) b that has dimensionality D, size N, and scalar type T is a function with the

bZ[O,Nl)NO X ... X [O’ND)NO - TU{J.}

Here, 1 denotes the undefined value. We refer to [0, N1 ), X. ..
BUF b, which we also denote as TV1*-*Np and we refer to set BUF-IDX-SETs := { [0, N)y, | N € N}
..,ip ] instead of b(iy, ..., ip) to avoid

x [0,Np)n, = Tu{L} as the type of

Definition 2 (Combine Operator). Let MDA-IDX-SETs x MDA-IDX-SETs := { (P, Q) € MDA-IDX-SETs
xMDA-IDX-SETs | PN Q = & } denote the set of all pairs of MDA index sets that are disjoint. Let
further =} : MDA-IDX-SETs — MDA-IDX-SETs be a function on MDA index sets, T € TYPE a scalar
type, D € N an MDA dimensionality, and d € [1, D]y an MDA dimension.

We refer to any binary function ® of type (parameters in angle brackets are type parameters)

®<(Il,...,Id,l,Id“,...,ID)eMDA—IDx—SETsD‘l , (P,Q)€eMDA-IDX-SETs X MDA-IDX-SETs> .

T[L,...,=>wa(P),...,Ip] x T[L,..., =ma(Q),.... Ip]

—— N——
; ; S T[L,...,=>mA(PuQ),...,Ip]
d d Y—
1
d

as combine operator that has index set function =\, scalar type T, dimensionality D, and operating

MDA
dimension d. We denote combine operator’s type concisely as CO<~0 IT|Dld>

All concepts are fully formally defined in the thesis

... (~140 pages)
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Code Optimization via ATF

Overview  Getting Started  Code Examples  Publications  Citations  Contact
———]——->

Overview

The Aute-Tuning Framework |ATH) is a general-purpose auto-tuning approach: given a program that is implemented as
generic in performance-critical program parameters {a.k.a. funing parameters), such as sizes of tiles and numbers of
threads, ATF Iully automatically determines a hardware- and data-optimized configuration of such parameters.

Auto-Tuning Framework (ATF)

Efficient Auto-Tuning of Parallel Programs with
Constrained Tuning Parameters

Key Feature of ATF

A key feature of ATF Is its support for Tuning Paramersr Constraints. Parameter constraints allow auto-tuning programs
whose tuning parameters have so-called interdependancies among them, e.g., the value of one tuning parameter has to
eventy divide the value of another tuning parameter,

ATF's support for parameter constraints is important; modern paralled programs target novel parallel architectures, and such
architectures typically have deep memory and core heerarchies thus requiring constraints on tuning parameters, e.g,, the
value of a tile size tuning parameter on an upper memory layer has to be a multiple of a tile size value on & lower memory
layer,

For such parameters, ATF introduces novel concepts for Generating & Staring & Exploring the search spaces of constrained
tuning parameters, thereby contributing to a substantially more efficient overall auto-tuning process for such parameters, as
confirmed In our Expanments.

Generality of ATF
For wide applicabllity, ATF Is designed as generic in:

1. The target program's Programmeng Language, e.g., C/C++, CUDA, OpenMP, or OpenCL. ATF offers pre-implemented
cost functions for conveniently auto-tuning C/C++ programs, as well as CUDA and OpenCL kernels which require host
code for their execution which is automatically generated and executed by ATF's pre-implemented CUDA and OpenCL
cost funclions. ATF also offers a pre-implemented generic cost function that can be used for conveniently auto-tuning
programs in any other programming language different from C/C++, CUDA, and OpenCL.

ACM TACO 2021

https://atf-tuner.org

Efficient Auto-Tuning of Parallel Programs with
Interdependent Tuning Parameters via Auto-Tuning
Framework (ATF)

ARI RASCH and RICHARD SCHULZE, University of Muenster, Germany
MICHEL STEUWER, University of Edinburgh, United Kingdom
SERGEI GORLATCH, University of Muenster, Germany

Auto-tuning is a popular approach to program optimization: it automatically finds good configurations of a
program’s so-called tuning parameters whose values are crucial for achieving high performance for a par-
ticular parallel architecture and characteristics of input/output data. We present three new contributions of
the Auto-Tuning Framework (ATF), which enable a key advantage in general-purpose auto-tuning: efficiently
optimizing programs whose tuning parameters have interdependencies among them. We make the following
contributions to the three main phases of general-purpose auto-tuning: (1) ATF generates the search space
of interdependent tuning parameters with high performance by efficiently exploiting parameter constraints;
(2) ATF stores such search spaces efficiently in memory, based on a novel chain-of-trees search space structure;
(3) ATF explores these search spaces faster, by employing a multi-dimensional search strategy on its chain-
of-trees search space representation. Our experiments demonstrate that, compared to the state-of-the-art,
general-purpose auto-tuning frameworks, ATF substantially improves generating, storing, and exploring the
search space of interdependent tuning parameters, thereby enabling an efficient overall auto-tuning process
for important applications from popular domains, including stencil computations, linear algebra routines,
quantum chemistry computations, and data mining algorithms.

CCS Concepts: « General and reference — Performance; - Computer systems organization — Paral-
lel architectures; « Software and its engineering — Parallel programming languages;

Additional Key Words and Phrases: Auto-tuning, parallel programs, interdependent tuning parameters

ACM Reference format:

Ari Rasch, Richard Schulze, Michel Steuwer, and Sergei Gorlatch. 2021. Efficient Auto-Tuning of Parallel
Programs with Interdependent Tuning Parameters via Auto-Tuning Framework (ATF). ACM Trans. Archit.
Code Optim. 18, 1, Article 1 (January 2021), 26 pages.

https://doi.org/10.1145/3427093
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Goal of ATF

Advantage of Auto-Tuning Framework (ATF) over state-of-the-art general-purpose AT approaches:

ATF finds values of performance-critical parameters with

Interdependencies among them

via optimized processes to

generating & storing & exploring

the spaces of interdependent parameters

— We illustrate ATF by comparing it to MIT's OpenTuner [PACT 14] & CLTune [MCSoC’15]
which is the foundation of many related approaches (e.g., KernelTuner & KTT).

Note: BaCO [ASPLOS'23] & KTT [FGCS20] recently adopted the ATF techniques to efficiently handle
interdependencies among tuning parameters.
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ATF: Contributions

The three major contributions of ATF:

1. ATF generates the search space of
interdependent parameters with high performance

- Parameter
Constraints

2. ATF stores these spaces with low memory footprint

3. ATF explores the spaces efficiently

CoT

Structure

?

ATF introduces novel processes to
generating & storing & exploring

the spaces of interdependent tuning parameters, based on a
novel constraint design and search space structure
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ATF: Internals in a Nutshell

The three major contributions of Auto-Tuning Framework (ATF):

Based on
Traditional Constraints

for ( vi : r1)

re )
T sc(vi,m,vi) )

add_config( vi,.,Vvk );

for ( vk :

parallel_for ( G : {G1,..,Gn} )
{
parallel_for ( vi6é : ri6 )

if( pciS(vis) )

parallel_for ( vigS @ rigs )
.( pCtgG(VtgG) )

I"tg+1G )

1f( pc(vigs®) )

for ( Vig+16 &

for( vké : rgo )

if( pc(vis) )

add_config( vi6,..,Vvk8 );

Based on
TF’s Parameter Constraints

Fast Space Generation:
- Break loop nest

- Parallelize loop nest
- Skip loops iterations

Memory-Friendly Storing:

- Avoid Redundancies

- interdependent parameters
— "tree”

- Independent parameters
— “chain”

Efficient Exploration:

- CoT maps to Coordinate
Space (CS)

- CS efficient structure for
search techniques

Straightforward

Search Space

22
2

»
39

22
2

51
1

52

22
2

51
3

54

22
2
51
17
68

ATF’'s CoT

Search Space
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ATE: Summary

ATF'’s efficiently handles tuning parameters with interdependencies among them:

ATF introduces novel concepts to
Generating & Storing & Exploring

the search spaces of interdependent parameters, based on its novel
constraint design and search space representation

Further ATF features (not presented on slides for brevity):

 ATF's has a DSL-based user interface that is arguably simpler to use and more expressive than
existing auto-tuners (including: OpenTuner & CLTune)

» ATF offers different kinds of search techniques and abort conditions (extensible)

« ATF offers a DSL-based user interface (offline tuning), as well as GPL-based interfaces (online

auto-tuning):

»
_ i
o

PYATF CppATF

github.com/atf-tuner/pyATF github.com/atf-tuner/cppATF

... (future work)
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Code Execution via HCA

Overview Contact

Host Code Abstraction (HCA)

A High-Level Abstraction for Host Code Programming
Designed for Distributed, Heterogeneous Systems

HCA

Overview
The Hoat Code Absiracton (HCA) is a high-level pregramming abstraction that sumphﬂes prlen,entmg and optmizing so-
called host code which is required in modern parallel programming approaches (e.q., A and OpenCl) to execute code on

the devices of distributed, heterogeneous systems,

More details will follow soon!

Contact

Journal of Supercomputing 2019

https://hca-project.org

Just a brief outline of HCA
(for brevity)

The Journal of Supercomputing (2020) 76:5117-5138
https://doi.org/10.1007/s11227-019-02829-2

=

Check for
updates

dOCAL: high-level distributed programming with OpenCL
and CUDA

Ari Rasch'® . Julian Bigge' - Martin Wrodarczyk' - Richard Schulze' -
Sergei Gorlatch'

Published online: 30 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

In the state-of-the-art parallel programming approaches OpenCL and CUDA, so-
called host code is required for program’s execution. Efficiently implementing host
code is often a cumbersome task, especially when executing OpenCL and CUDA
programs on systems with multiple nodes, each comprising different devices, e.g.,
multi-core CPU and graphics processing units; the programmer is responsible for
explicitly managing node’s and device’s memory, synchronizing computations
with data transfers between devices of potentially different nodes and for optimiz-
ing data transfers between devices’ memories and nodes’ main memories, e.g.,
by using pinned main memory for accelerating data transfers and overlapping the
transfers with computations. We develop distributed OpenCL/CUDA abstraction
layer (lOCAL)—a novel high-level C++ library that simplifies the development of
host code. dOCAL combines major advantages over the state-of-the-art high-level
approaches: (1) it simplifies implementing both OpenCL and CUDA host code by
providing a simple-to-use, high-level abstraction API; (2) it supports executing arbi-
trary OpenCL and CUDA programs; (3) it allows conveniently targeting the devices
of different nodes by automatically managing node-to-node communications; (4) it
simplifies implementing data transfer optimizations by providing different, specially
allocated memory regions, e.g., pinned main memory for overlapping data transfers
with computations; (5) it optimizes memory management by automatically avoid-
ing unnecessary data transfers; (6) it enables interoperability between OpenCL and
CUDA host code for systems with devices from different vendors. Our experiments
show that dOCAL significantly simplifies the development of host code for hetero-
geneous and distributed systems, with a low runtime overhead.
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Goal of HCA

HCA simplifies implementing host code (e.g., OpenCL & CUDA) for the programmer:

HCA offers an easy-to-use high-level API for host code programming that

frees the user from boilerplate low-level commands (e.g., for memory allocations OV 17
and data transfers) s /‘
OpenCL

HCA allows conveniently targeting multiple devices and of potentially
different nodes (by automatically managing device-to-device communications)

HCA simplifies implementing host code optimizations (e.g., using pinned main

memory for overlapping data transfers with computations) NVIDIA

HCA optimizes memory management by automatically avoiding unnecessary CUDA

data transfers (by internally generating & maintaining a data-dependency graph)

Related approaches usually offer only a subset of these
HCA advantages

30



HCA: Overview

CUDA vs. HC A — for executing parallel reduction CUDA kernel:

int main(int argc, char sxargv) : #include “hca.hpp”
{
// initialization : int main()
int i, j, gpuBase, GPU_N; {
cudaGetDeviceCount (&GPU_N); nV|D|A int N = /% arbitrary chunk size x*/;
/] d
. // 1. choose devices
/* ... prepare input data ... */ (:lj[)lx auto devices = hca::get_all_devices<CUDA>();
// Allocate device and host memory // 2. declare kernel
for (i = @0; 1 < GPU_N; i++) { hca::kernel reduction = cuda::source( /*x kernel x/ );
cudaSetDevice(1i));
cudaStreamCreate(&plan[i].stream)); const int GS = 32, BS = 256;
_ cudaMalloc((void *x)&plan[i].d_Data, plan[i].dataN x
sizeof(float)); . . . // 3. prepare kernels' inputs
cudaMalloc((void sx)&plan[i].d_Sum, ACCUM_N * sizeof(float)); hca::buffer<float> in ( N *x devices.size() );
cudaMallocHost((void *x)&plan[i].h_Sum_from_device, ACCUM_N hca::buffer<float> out( GS*BS * devices.size() );
sizeof(float));
cudaMallocHost((void *k)&plan[i]l.h_Data, plan[i].dataN * std::generate(in.begin(), in.end(), std::rand);
sizeof(float));
for (j = 0; j < plan[il.dataN; j++) - -
plan[il.h_Datalj] = (float)rand()/(float)RAND_MAX; éér?'aziggtdgsvfcgeSQQEEt?tlons
dev( reduction _ )
// Perform data transfers and start device computations § Si?ié(gﬁt?éegim?§+ggv?id()* GS*BS, GS*BS ;’
for (i = 0; i < GPUN; i++) { read (in.begin() +dev.id()x N , N ),
cudaSetDevice(i); N )
cudaMemcpyAsync(plan[i].d_Data, plan[il.h_Data, plan[i].dataN x !
sizeof(float), cudaMemcpyHostToDevice, plan[il.stream); - . ; .. .
reduceKernel<<<BLOCK_N, THREADN, 0, auto res = std::accumulate( out.begin(), out.end(), std::plus<float>() );
plan[i].stream>>>(plan[i].d_Sum, plan[i].d_Data, plan[i].dataN); .. .. .
cudaMemcpyAsync(plan[i] .h_Sum_from_device, plan[il.d_Sum, ) std::cout << res << std::endl;
ACCUM_N xsizeof(float), cudaMemcpyDeviceToHost, plan[il.stream);
¥ .
// combine GPUs' results HCA Code (Equivalent to CUDA code left)
for (1 = 0; 1 < GPU_N; i++) {
float sum;
cudaSetDevice(i);
cudaStreamSynchronize(plan[il.stream);
sum = 0;
for (j = 0; j < ACCUM_N; j++) I_ h_ h I | 'I:
sum += plan[i]l.h_Sum_from_devicelj]; -
c(olanTil hosum) e Hoat e, HCA relles on a nignh user-ievel o
cudaFreeHost(plan[i].h_Sum_from_device);
cudaFree(plan[il.d_Sum); I I
cudafree(planiil.d_sunl:, abstraction instead of complex, error-prone
cudaStreamDestroy(plan[i].stream);
} | ]
low-level functions
/* ... Compare GPU and CPU results ... x/
¥

Excerpt of NVIDIA SDK CUDA host code for executing
parallel reduction CUDA kernel 31



HCA: Summary

Goal of HCA:

HCA is a programming library for

simplifying host code programming
by abstracting from low-level details

Further HCA Features:

enables interoperability between OpenCL and CUDA host code

supports auto-tuning

compatible with existing libraries (e.g., NVIDIA cuBLAS/cuDNN)

simplifies profiling

NVIDIA.
CUDA
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MDH+ATF+HCA: User Interfaces

A Domain-Specific Language (DSL):

MatVec<T€TYPE |I,KelN> —

out_view<T>( w:(i,k)—~(1i) ) o

md_hom<I,K>(*, (+,+)) o

MDH’s Formal Representation
of MatVec

inp_view<T,T>( M:(i,k)~(1,k),v:(i,k)=(k) )

MatVec<T in TYPE | I,K in IN> := out_view<T>( w:(i,k)->(1i) ) o

md_hom<I,K>( *, (++,+) ) o

MDH’s DSL Representation
of MatVec

inp_view<T,T>( M:(i,k)->(1i,k),

v:(i,k)->(k) )

MDH+ATF+HCA /
HCA
M GPU-Tuned | (=" » GPU

NTF Code
MDH ] —
R I MDH_ ) Auto-Tunable ,
Expression @ Code Q‘ :
User _ HCA
| @ | CPu-Tuned LECh "oy
? s * 1o

Generation Optimization  Execution




MDH+ATF+HCA: User Interfaces

Automatic Parallelization:

C Implementation
of MatVec

MDH's DSL Representation
of MatVec

rofor(int 1 =05 1 <1I; ++1 ) MatVec<T in TYPE | I,K in IN> := out_view<T>( w:(i,k)->(i) ) o
2 for( int k = 0; k < K; ++k )
3 { md_hom<I,K>( *, (++,+) ) 0
4 w[i] += M[i][k] * v[k];
5 } inp_view<T,T>( M:(i,k)->(1i,k),
v:(i,k)->(k) )
\V4
/S::Z\ o v MDH+ATF+HCA
- pet md_poly
; Sequential I Polyhedra_l MDH_ >
C Code @ Representation Expression « (prev. slide)
User

e e ———— _ R e e —————

MDH pragma enables advanced optimizations:

#pragma mdh ( wlil

++ , + )

R e R R

e
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Conclusion

The MDH+ATF+HCA approach is a novel approach toward Performance & Portability &
Productivity for data-parallel computations targeting modern parallel architectures:

1 A DSL-equivalent MLIR frontend will be introduced soon.

The MDH+ATF+HCA approach:
High-Level Program Low-Level Program Executable Host + Program
Representation Representation Program Code Code
MDH .= ATF = HCA
’ | ’ D
TOWARD ol
PERFORMANCE & PORTABILITY & PRODUCTIVITY e (i) ('2) = ('3)
IN PARALLEL PROGRAMMING . .. . = .
o . o . Generation Optimization Execution
for Dats Parsllel Commpetatioes Tormeting Madars perallel Aroitechies [TOPLAS’24, [TACO’21, [J0S"19,
PACT’19, IJPP’18] CCPE’19, HPCC'17] ICPADS’18]
e The three sub-projects — MDH & ATF & HCA — complement
Mmmg each other to a holistic code Generation & Optimization &
of the University of Miinster, Germany Exe C uti O n ap p ro a C h
submitted by e Our holistic approach takes as input easy-to-use DSL
born i s, Germany programs or sequential (annotated) C codel
e There are many (promising) future directions for
MDH & ATF & HCA (one part of thesis dedicated to FW)
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Stay Tuned !

The approaches MDH & ATF & HCA are starting points for many future directions:

Fusion Optimization
(MDH)

Encouraging WIP results —

already awarded & funded:

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(4,1) (4,2) (4,3)

CoT Optimization
(ATF)

(1,4) (1,1) (1,2) (1,3)

(2,4) (2,1) (2,2)

(3,4) (3,1) (3,2) (3,3) (3,4)

(4,4) (4,1)

Irregular Data Accesses

JF

Deutsche
Forschungsgemeinschaft

German Reseach Foundation

Gold Winner: E
SRC @ CGO

Gold Winner:

SRC @ PACT

(MDH)

PUMPS+AI

Best Poster Award

... (many more)

Lorentz

Award for:
Applied ;
Computer Science

SC Best Poster
Finalist
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Questions
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