m— " = Universitit

COPENHAGEN 2024
ACM TOPLAS

(De/Re)-Composition of Data-Parallel Computations
via Multi-Dimensional Homomorphisms

Ari Rasch

University of Munster, Germany

Introductory Remarks

This talk (briefly!) highlights the main contributions
of our paper (~20 slides vs. >70 pages)

Talk focuses on illustrative examples, rather than
formal definitions & details (all provided and
thoroughly discussed in the paper)

There is a (full) arXiv version of the paper that
contains all formal details [1]

Paper is long: >70 pages (>130 pages arXiv)

Many illustrations and discussions — you can get
the basic idea even when skipping the formal
details

The paper attempts to make a general,

fundamental contribution to the community
(see next slide)

arXiv preprint arXiv.2405.05118 (2024).

(De/Re)-Composition of Data-Parallel Computations
via Multi-Dimensional Homomorphisms*

ARI RASCH, University of Muenster, Germany

Data-parallel computations, such as linear algebra routines (BLAS) and stencil computations, constitute one of the most relevant
classes in parallel computing, e.g., due to their importance for deep learning. Efficiently de-composing such computations
for the memory and core hierarchies of modern architectures and re-composing the computed intermediate results back to
the final result — we say (de/re)-composition for short - is key to achieve high performance for these computations on, e.g.,
GPU and CPU. Current high-level approaches to generating data-parallel code are often restricted to a particular subclass of
data-parallel computations and architectures (e.g., only linear algebra routines on only GPU, or only stencil computations),
and/or the approaches rely on a user-guided optimization process for a well-performing (de/re)-composition of computations,
which is complex and error prone for the user.

We formally introduce a systematic (de/re)-composition approach, based on the algebraic formalism of Multi-Dimensional
Homomorphisms (MDHs)". Our approach is designed as general enough to be applicable to a wide range of data-parallel
computations and for various kinds of target parallel architectures. To efficiently target the deep and complex memory and
core hierarchies of contemporary architectures, we exploit our introduced (de/re)-composition approach for a correct-by-
construction, parametrized cache blocking and parallelization strategy. We show that our approach is powerful enough
to express, in the same formalism, the (de/re)-composition strategies of different classes of state-of-the-art approaches
(scheduling-based, polyhedral, etc), and we demonstrate that the parameters of our strategies enable systematically generating
code that can be fully automatically optimized (auto-tuned) for the particular target architecture and characteristics of the
input and output data (e.g., their sizes and memory layouts). Particularly, our experiments confirm that via auto-tuning,
we achieve higher performance than state-of-the-art approaches, including hand-optimized solutions provided by vendors
(such as NVIDIA cuBLAS/cuDNN and Intel oneMKL/oneDNN); on real-world data sets and for a variety of data-parallel
computations, including: linear algebra routines, stencil and quantum chemistry computations, data mining algorithms, and
computations that recently gained high attention due to their relevance for deep learning.

CCS Concepts: » Computing methodologies — Parallel computing methodologies; Machine learning; « Theory of
computation — Program semantics; « Software and its engineering — Compilers.

Additional Key Words and Phrases: code generation, data parallelism, auto-tuning, GPU, CPU, OpenMP, CUDA, OpenCL,
linear algebra, stencils computation, quantum chemistry, data mining, deep learning

1 INTRODUCTION

Data-parallel computations constitute one of the most relevant classes in parallel computing. Important examples
of such computations include linear algebra routines (BLAS) [Whaley and Dongarra 1998], various kinds of

*A full version of this paper is provided by Rasch [2024], which presents our novel concepts with all of their formal details. In contrast
to the full version, this paper relies on a simplified formal foundation for better illustration and easier understanding. We often refer the
interested reader to Rasch [2024] for formal details that should not be required for understanding the basic ideas and concepts of our approach.

!https://mdh-lang.org

Author’s address: Ari Rasch, University of Muenster, Muenster, Germany, a.rasch@uni-muenster.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org,.

© 2024 Copyright held by the owner/author(s).

ACM 1558-4593/2024/5-ART

https://doi.org/10.1145/3665643

ACM Trans. Program. Lang. Syst.

[1] Rasch, Ari. "Full Version: (De/Re)-Composition of Data-Parallel Computations via Multi-Dimensional Homomorphisms."

Goal of this Work

Questions addressed by this talk:

How can data-parallel computations be uniformly

How can data parallelism be aflel
P expressed via higher-order functions?

formally defined?
T — S — T — "

How can data-parallel computations be expressed agonistic from of

How can optimizations for the hardware and optimization details (and still capture all information
memory and core hierarchies relevant for generating high-performing code)?

of state-of-the-art parallel o — ————EEE
architectures be formally
expressed?

How can such optimizations be generalized to apply
to arbitrary data-parallel computations?

T —

':'-

—‘—

How can optimizations for data-parallel computations be expressed
and structured so that they can be fully automatically identified (auto-tuned)
for a particular target architecture and characteristics of the input and output data?

R ——————————mmmmTTT—

All questions are answered (fully formally) in the paper!
3

Goal of this Work

A (formal) framework for expressing & optimizing data-parallel computations:

: Contribution (1) Contribution (2)
Linear : : OpenMP
Algebra Contribution (3)
. 5 CUDA
Data Stencils
Mining

| OpenCL

Quantum
Chemistry
Automatized
T (via Auto-Tuning) T
User Defined Straightforward

1. Contribution 1 (HL-REP): defines data parallelism & introduces higher-order functions for expressing
data-parallel computations, agnostic from hardware and optimization details while still capturing all
information relevant for generating high-performing code

2. Contribution 2 (LL-REP): allows expressing and reasoning about optimizations for the memory and
core hierarchies of state-of-the-art parallel architectures & generalizes these optimizations to apply to
arbitrary combinations of data-parallel computations and parallel architectures

3. Contribution 3 (—): introduces a structured optimization process — for arbitrary combinations of data-
parallel computations and parallel architectures — to allow fully automatic optimizations (auto-tuning)

Agenda

1. Contribution 1: High-Level Representation

2. Contribution 2: [ow-Level Representation

3. Contribution 3: Lowering: High-Level Representation = Low-Level Representation

4. Experimental Results (Performance & Portability & Productivity)
5. Related Work

6. Conclusion

~ contribution1 ~ contribution 2
3 slides vs 17p.TOPLAS (26p.arXiv) 1 slide vs 9p.TOPLAS (20p.arXiv)
"~ Contribution 3
1 slide vs 4p.TOPLAS (2p.arXiv)

Experimentale Results Related Work
4 slides vs 23p.TOPLAS (23p.arXiv) 1 slide vs 11lp.TOPLAS (1llp.arXiv)

High-Level Representation

Goals:

1. Uniform:
should be able to express any kind of data-parallel computation, without relying

on domain-specific building blocks, extensions, etc.

2. Minimalistic:
should rely on less building blocks to keep language small and simple

3. Structured:
avoiding compositions and nestings of building blocks as much as possible,

thereby further contributing to usability and simplicity of our language

MatVec TETYPEILKEN> . oyt view<T>(w:(i,k)—(i)) o
md hom<I,K>(x*, (#,+)) o

inp view<T,T>(M:(i,k)—(i,k) ,v:(i,k)—(k))

Our High-Level Representation of MatVec

High-Level Representation

@

Overview:

Matrix Matrix i n p_V ieW

Vector Vector | | >
Scalar .. s Scalar .. A

N /!

Domain-Specific

Data Representation
transforms

domain-specific data representation
to internal representation

Internal

A

®

Data Representation

md hom out view

Matrix Matrix
Vector Vector
Scalar .. - Scalar ..
X /

Domain-Specific
Data Representation

transforms

internal data representation to
domain-specific representation

computes

data parallel computation

[Our high-level representation defines data-parallel computations as)
Multi-Dimensional Homomorphisms (MDH),
and it expresses data-parallel computations using exactly
L three straightforwardly composed higher-order functions only

High-Level Representation

inp_view out_view
mdhom | £ |® | ® | ®3| @4 Views A | B C
Dot «| + [1] Dot I ~ &) &) ~ ® ~ O md_hom [£]®1 | ® | ®| @] 85| ® | ® | ® | ® | ®10
MatVec * | ++ | + P P MatVec (i,k) » (i,k) (1i,k) » & (i,k) » (D Conv2D * | ++ | ++ | + + , , P))
MatMul | * | ++ | ++ | + | MatMul (1,j,k) » (i,k) (1,j,k) » (k,j) (1,j,k) » (1,3) MCC * | | | A 4t + , -, ,
MatMul® || * | ++ | ++ | + | ~ MatMul® || (i,j,k) = (k,i) (i,j,k) » (j,k) (i,j,k) » (j,1) MCC_Capsule | * | ++ | ++ | ++ | ++ | + | + [+ [++ [++] +
bMatMul || * | ++ | ++ | ++ | + bMatMul || (b,i,j,k) ~ (b,i,k) | (b,i,j,k) ~ (b,k,j) | (b,i,j,k) ~ (b,i,j)
1) Linear Algebra Routines
inp_view out_view
Views I | F 0
inp_view out_view Conv2D (p,q,r,s) — (p+r,g+s) (p,q,r,s) ~» (r,s) (p,q,r,s) ~» (p,q)
md_hom H f ‘ ®1 ‘ ®9 Views A Out MCC (n,p,...) + (n,ptr,qgts,c) (n,p,...) =~ (k,r,s,c) (n,p,...) +~ (n,p,q,k)
MBBS ‘id ‘++mmfbpmm(+) ‘ + MBBS “(i,j) ~ (i,3) ‘(i) — (i) MCC_Capsule || (n,p,...) =~ (n,pt+r,qg+s,c,cm,ck) | (n,p,...) =~ (k,r,s,c,ck,cn) | (n,p,...) =~ (n,p,q,k,cm,cn)
8) Maximum Bottom Box Sum 2) Convolution Stencils
inp_view out_view
mdhom || £ |® | ® Views I 0 inp view out view
JacobilD [Jip | ++ | ~ JacobilD || (i) = (i+0) , (i) ~ (i+1) , (1) ~ (i+2) | (i) ~» (i) mdhom | £ |[®1| & Views N | E M
Jacobi2D || Jop | ++ | ++ Jacobi2D || (i,j) ~ (1,j+1) , (1,j) » (i+1,3) , ... | (1,5) » (1,7 PRL | wght | ++ [maxppe PRL | (i,5) » D) | (L,5) ») | G,5) » @)
3) Jacobi Stencils 4) Probabilistic Record Linkage
inp_view out_view
md_hom “ f ‘ ®q Views I 0
inp view out_view scan(®) H id ‘++pnﬁix$um(®) scan(®) H 1) » @) ‘(i) ~ (1)
md_hom [N Views I 01 [0y
map (£) ++ map (£) GO e O] @ - @) , 7) Scan Pattern
reduce (&) id ® reduce (@) @A @@= 0 ,
reduce(®,®) | (x) - (x,x) | (8,®) reduce(®,®) || (1) - (1) | (1) » O 1) » O

6) Map/Reduce Patterns

md_hom ‘

| f

o | o

Views

inp_view

out_view

Bins

‘ Elems

Out

Histo || fuiseo | ++ | +

Histo || (b,e) = () [(b,e) » (o) [(b,e) ~ (b)

5) Histogram

[Our high-level representation is capable of expressing

the various kinds of data-parallel computations
which often differ in major characteristics

~

Low-Level Representation

Goals:

1. Expressing a hardware- & data-optimized de-composition and re-composition of data-parallel
computations, based on an Abstract System Model (ASM)

2. Being straightforwardly transformable to executable program code (e.g., in OpenMP, CUDA,
and OpenCL) — major optimization decisions explicitly expressed in low-level representation

A out view

o inp_ view
w <« la Mo = ta
iigi, 7 (HM, %) (HM,y) <
®§HM X) | ®§HM,y) _H_l X) . 1 —|+2 y
p16[072)N0 4 pé€[074)N0 pi€[072)N0 > pé€[0,4)N0 . - .
s w: HM[1] s w: HM[1] ~ M: HM[1,2] {2} — M: HM[1,2] Assignment of tile
ﬁ?ﬁ,y’ vi B[] 7 v: HM[1] computations to
& (COR,) - o (COR.) L (COR) %) . COR) core h1erarcl.1y
1 2 1 2 of target device
p%€[078)N0 4 pg€[0)16)N0 p§€[078)N0 \b p§€[0716)N0
— w: HM[1] — w: HM[1] — M: HM[1,2] {4} — M: HM[1,2]
11 ' v: HM[1] 7 y: HM[1]
oLLX ®(L1,y) 4 AL =Y 4 L1y : Assignment of tile
sk a0, 2 oL L2 : computations to
p:€[0,32)n, p3€[0,64)n, PIE[0,32)Ng s PRE[0,64) 1y, rreeeeseeees :
- w: L1[1] - w: L1[1] — M: HM[1,2] 6 — M: HM[1,2] memory hlerarChy
5y v: Li[1] v: L1[1] of target device
‘.___':';x." ‘:* 8: —-—-—_____::_'::‘
L o o i
tq<Prop2 | PIps | pLpa> J oy <pips | p1ps | plps>
f f v
— < (1,2) , (3,4) , (5,6) >
Re-Composition — < (HM,x),(HM,y) , (COR,x),(COR,x) , (L1,x),(L1l,y) > De-Composition
— M: HM[1,2] , v: L1[1]
— w: L1[1]

d
<

Scalar Computation

Low-Level Representation

Excursion: Visualization of MDH Low-Level Programs
OUT MDA

W

h

o

I
|’

iLi

L ol

out view
g

wi (1,k)-(1)

<

out view
[d

w: (i,k)-(1)

<«

out view
b

w: (i,Kk)-(1)

4

out view
Vo>

wi (1,K)-(1i)

Re-Composition

—

I

0000
00 oo
00 0o
Q0 aa

oo ao
00 0o

oo
ao
oo
oo

B 11

oo
1] Ll

a0 00
a0 oo
a0 a0
a0 0o
00 do
a0 an

010 00
00 a0

DEV.x

DEV.y

—

COR. X

—

DEV.y

DEV.x

COR.x

ix1

Scalar Computation

mM

INP

MDA

a0 00
Q0 oo
a0 00
a0 oo

a0 oo
00 oo

a0 oo
O0ooo

a0 00
Qa0 Qo
a0 a0
a0 Qo
00 Q0
0000

00 00
00 00

M:
v

inp view

M:
Vi

M:
Vi

inp view

M:
Vi

.

inp view

<«

(l‘K)*(LLK)
(1.K)-(k)

-

(ink)”(ish)
(i.K)-(k)

i

inp view

A

(lah)*(llk)
(1.K)=(k)

<~y

(ilk)*(llk)
(1,k)-(k)

0

0

. [

0

HM HM
0

HM HM
Ol—

HM L1

R

.
-k

HM

De-Composition

10

Low-Level Representation

Code generation:

1 |// @.1.2. combine operators 1 ‘// 2. scalar phase ‘
2 < o faes (1, 1) >
3 // pre-implemented combine operators 2 ‘ int p_ ofora(1,1) ¢ frass #PRT (0forg(L, 1)) ‘
4
3 .
5 // inverse concatenation ‘ (L, D) ‘
. < & , >
6 | VdeN: , 4 | int p_ oporg(L D) € T #PRT (0foorg(L, D)) |
7 cc_inv<<d>><l, ..., Ig_1, Iz41, .., Ip € MDA-IDX-SETs, (P, Q) € MDA-IDX-SETs x MDA-IDX-SETs>(
8 T™L, .. Ig_y, id(PW Q), Ig4q, ..., Ip] res) -> (T™[L, ..., Iy_y, id(P) ,Iz4q, ..., Ip] lhs , 5 {
9 TN, . Iy g, id(Q)) It ... ID] rhs) 6 (
10 { 7 11_out_mda<<f>><<
11 int i_1 € L 8 p_(1,1) ,..., p_(1,D),
12 9
13 int i_{d-1} € I4, 10 p_(L,1) ,..., p_(L,D)>><<b,a>>(
14 int i_{d+1} € I4 L MDA
i +1 1 | SA(I<<I>><p_(1,1), ..., p_(L,1)>(0)) , \
16 int i_D e Ip 12 | : \
D
1; O cidep 13 | SIA(I<<D>><p_(1,D),...,p_(L,D)>(0))) |
in 1_
19 res{ i_1,...,i_d,...,i_D] =: lhs[i_1,...,i_d,...,i_DI; 14 | dpe[1.B% . ac[1.a®], (= FO C Hl_inpmda<<f>><<p_(1,1) ..., p-(1,D), |
20 int i_d € Q 15
21 resf i_1,...,i_d,...,i_D] =: rhs[i_1,...,i_d,...,i_D]J; 16 p_(L,1) ,..., p_(L,D)>><<b,a>>(
22 } d
23 3 17 | ?mgﬁ(I<<1>><p_(1,1),...,p_(L,1)>(0)) , \
18 :
Listing 11. Pre-Implemented Combine Operators ‘ d ‘
19 | =IBA(1<<D>><p_(1,D),...,p_(L,D)>(@))) \
++
20) By)
1 |// 3. re-composition phase ” ‘) bs[l,BIB]N,ae[l,Al7 In ‘
2
3 //°3.1. main Listing 17. Scalar Phase
: < +poass (1, 1) >
4 | int p_ opora(1,1) € #PRT (0p-ord(1, 1)) \
S |
4 1,2
6 | int p_ op-ord(1, 2) < IS (4.2) > #PRT (op-ora(1, 2)) \
o |
8
9 | int p_ ojorg(L D) € o (L. D) > #PRT (0p-ord(L, D)) | O C d G t. P
0| c | ur c.oae Generation rFrocess
11 ‘ 11_out_mda<< op-ord(L, D) >> ::CO< ot-org(LD) > out_mda<<f>>; ‘ . . .
A | is outlined in [1], based on an
14 ‘ 11_out_mda<< o4org(L, 2) >> := B (L2) > out_mda<< op-ord(L, 3) >>; ‘ . . .
CO< Ot-ord\1,
s s \ iImperative-style pseudocode notation
16 ‘ ll_OUt_mda<< O-T_ord(l’ 1) > ::co< G’T—ord(l,l) > OUt_mda<< O-T—Ord(l’ 2) 77 ‘ 'l L - L -
7| (intended to be described in detail in FW)
19 // 3.2. finalization
20 ‘ 11_out_mda<<1>> := 1l_out_mda<< op-org(1, 1) >> ‘
L |

Listing 18. Re-Composition Phase

[1] Rasch, Ari. “Full Version: (De/Re)-Composition of Data-Parallel Computations via Multi-Dimensional Homomorphisms.” arXiv.2405.05118.

Based on (formally defined) performance-critical parameters, for a structured optimization process:

Lowering: High Level = Low-Level

No. | Name Range Description

© | #PRT MDH-LVL — N number of parts

D1 | 0}-ord MDH-LVL <> MDH-LVL de-composition order

D2 | <>|-ass MDH-LVL <> ASM-LVL ASM assignment (de-composition)

D3 | J-mem**®> | MDH-LVL — MR memory regions of input BUFs (ib)

D4 | oy MDH-LVL - [1,..., Dil]s | memory layouts of input BUFs (ib))

S1 | 0f-ord MDH-LVL <> MDH-LVL scalar function order

S2 | < foass MDH-LVL < ASM-LVL ASM assignment (scalar function)<«

S3 | fr-mem*®> | MR memory region of input BUF (ib)

S4]fff’;em [1,....D8]s memory layout of input BUF (ib)

S5 | f1-mem<®> | MR memory region of output BUF (ob)

S6 ;?f);em [1,...,D%]s memory layout of output BUF (ob)

R1 | 01-ord MDH-LVL <> MDH-LVL re-composition order

R2 | <>1-ass MDH-LVL <> ASM-LVL ASM assignment (re-composition)«

R3 | 1-mem*®® | MDH-LVL — MR memory regions of output BUFs (ob)
‘

R4 af_on'?;m MDH-LVL — [1,...,D%]s | memory layouts of output BUFs (ob)

We use our Auto-Tuning Framework (ATF) [1] to fully automatically determine optimized values of parameters

[1] Rasch, Schulze, Steuwer, Gorlatch, “Efficient Auto-Tuning of Parallel Programs with Interdependent Tuning Parameters via Auto-Tuning Framework (ATF)”, TACO’21

Table 1. Tuning parameters of our low-level expressions

(parallelization)

exploiting core hierarchy

e

exploiting memory hierarchy
(data movements)

R — R

Our parameters

unify & generalize & combine
well-proven optimizations
(e.g., data movement & tiling)

12

We experimentally evaluate our MDH approach in terms of Performance & Portability & Productivity:.

Experimental Results

Competitors:

1.

Scheduling Approach:

- Apache TVM [2] (GPU & CPU)

Polyhedral Compilers:

- PPCG [3] (GPU)
- Pluto [4] (CPU)

Functional Approach:

- Lift [5] (GPU & CPU)

Domain-Specific Libraries:

- NVIDIA cuBLAS & cuDNN (GPU)
- Intel oneMKL & oneDNN (CPU)

[2] Chen et al., “TVM: An Automated End-to-End Optimizing Compiler for Deep
Learning”, OSDI’18

[3] Verdoolaege et al., “Polyhedral Parallel Code Generation for CUDA”, TACO’13

[4] Bondhugula et al., “PLuTo: A Practical and Fully Automatic Polyhedral
Program Optimization System”, PLDI’08

[5] Steuwer et al., “Generating Performance Portable Code using Rewrite Rules”,

ICFP’15

Case Studies:

1.

Linear Algebra Routines:

- Matrix Multiplication (MatMul)
- Matrix-Vector Multiplication (MatVec)

. Stencil Computations:

- Jacobi Computation (Jacobi1D)

- Gaussian Convolution (Conv2D)

. Quantum Chemistry:

- Coupled Cluster (CCSD(T))
Data Mining:

- Probabilistic Record Linkage (PRL)

Deep Learning:

- Multi-Channel Convolution (MCCQ)

- Capsule-Style Convolution (MCC_Capsule)

. NVIDIA.

13

Experimental Results

Performance Evaluation: (via runtime comparison)

NVIDIA Ampere GPU
Deep ResNet-50 VGG-16 MobileNet
Learning Training Inference Training Inference Training ;Inference
MCC MatMul MCC MatMul MCC MatMul MCC MatMul MCC MCC
TVM+Ansor 1.00 1.26 1.05 2.22 0.93 1.42 0.88 1.14 0.94 1.00 nVIDIA®
PPCG 3456.16; 8.26 - 7.89 1661.14: 7.06 5.77 5.08 2254.67 7.55
MDH speedup over
PPCG+ATF 3.28 2.58 13.76 5.44 4.26 3.92 9.46 3.73 3.31 10.71 0 0
CUDNN 0.92 - 1.85 - 1.22 - 1.94 - 1.81 2.14 e T\VM: 0.88x — 2.22x
BLAS - 1.58 - 2.67 - 0.93 - 1.04 - -
- PPCG: 2.58x — 13.76x
CUBLASEXx - 1.47 - 2.56 - 0.92 - 1.02 - -
CUBLASLt - 1.26 - 1.22 - 0.91 - 1.01 - - * (CUBLAS/CUDNN: 0.91x - 2'67X)
Intel Skylake CPU
Deep ResNet-50 VGG-16 MobileNet
Learning Training Inference Training Inference Training :Inference u @
MCC MatMul MCC MatMul MCC MatMul MCC MatMul MCC MCC l n tel
TVM+Ansor 1.53 1.05 1.14 1.20 1.97 1.14 2.38 1.27 3.01 1.40
Pluto 355.81 | 49.57 | 364.43 | 13.93 | 130.80 | 93.21 | 186.25 | 36.30 152.14 75.37
MDH speedup over
Pluto+ATF 13.08 19.70 | 170.69 6.57 3.11 6.29 53.61 8.29 3.50 25.41 ' '
oneDNN 0.39 - 5.07 - 1.22 - 9.01 - 1.05 4,20 o TVM . 1 u ®5 - 3 u Q]-X
oneMKL - 0.44 - 1.09 - 0.88 - 0.53 - - ° PlUtO: 6.29x — 364.43x
oneMKL(JIT) - 6.43 - 8.33 - 27.09 - 9.78 - -
® (oneMKL/oneDNN: 0.39x — 9.01x)

Significantly higher speedups for other case studies,
e.g., >170x over TVM on GPU already for straightforward dot products 14

Experimental Results

Portability Evaluation: (via Pennycook Metric [6])

Pennycook Metric

Deep | ResNet-50 . V6616 . MobileNet
Learwuing Training E Inference § Training § Inference ETrainingéInference
MCC | MatMul | MCC | MatMul i MCC MatMul | MCC | MatMul & MCC | MCC
MDH+ATF .67 | ©0.76 | ©0.91 = 1.00 . ©0.98 .95 | 0.97 . ©0.68 = ©0.98 . 1.00
TVM+Ansor 0.53 | ©0.62 | .89 = 0.59 | ©0.76 @ 0.81 = 0.70 | ©0.61 | 0.54 | 0.75

The other related approaches achieve lowest portability — of “0.00” — only,
because they are designed for particular architectures and/or application classes only

[6] Pennycook et al., “Implications of a Metric for Performance Portability”, FGCS’19 15

Experimental Results

Productivity Evaluation: (via intuitive argumentation)

cublasSgemv(/*x ... */);

Listing 4. cuBLAS program expressing Matrix-Vector Multiplication (MatVec)

1 [for(int i =0 ; i < M ; ++i)
2 for(int k = 0 ; k < K ; ++k)
3 wli]l += M[iJ[k] * v[k];

Listing 2. PPCG/Pluto program expressing Matrix-Vector Multiplication (MatVec)

1 | def MatVec(I, K):

2 M = te.placeholder ((I, K), name='M', dtype='float32')
3 v = te.placeholder ((K,), name='v', dtype='float32')

4

5 k = te.reduce_axis((@, K), name='k')

6 w = te.compute(

7 (I,),

8 lambda i: te.sum(M[i, k] * v[k], axis=k)

9)

10 return [M, v, w]

Listing 1. TVM program expressing Matrix-Vector Multiplication (MatVec)

nFun(n => nFun(m =>
fun(matrix: [[floatIlnIm => fun(xs: [floatln =>
matrix :>> map(fun(row =>
zip(xs, row) :>> map(x) :>> reduce(+, 0)

)) D) D)

Ul = W N =

Listing 3. Lift program expressing Matrix-Vector Multiplication (MatVec) 16

Related Work

MDH often achieves higher Performance & Portability & Productivity than state-of-practice
approaches:

Class Popular Examples Performance Portability Productivity

often require
re-design/extension
for new architectures

incorporate user into

Scheduling TVM, Halide, Fireiron ‘/ optimization process

transformations

struggle with reductions chosen toward particular
Polyhedral TC, PPCG, Pluto (e.g., dot in MatMul) architectures and data ‘/
characteristics
transformations
Functional Lift V designed toward often incorporate user

particular architectures
and data characteristics

into optimization process

hand-optimized toward

Domain-Specific cuBLAS, oneMKL ‘/ : particular architecture and

. data characteristics
1

Futhark, Dex, ATL,

Higher-Level Yang et al.[POPL’21], ..

We consider these approaches as greatly combinable with our approach _ -

17

Conclusion

* MDH is a formalism for expressing and optimizing data-parallel computations.

e MDH achieves higher performance & portability & productivity than related approaches.

Overview Getting Started Code Examples Publications Citations Contact

We have a Website

Multi-Dimensional Homomorphisms (MDH)
/\/\ D |—| An Algebraic Approach Toward Performance & Portability & Productivity

for Data-Parallel Computations

Overview

The approach of Multi-Dimensional Homomorphisms (MDH) is an algebraic formalism for systematically reasoning about de-
composition and re-composition strategies of data-parallel computations (such as linear algebra routines and stencil
computations) for the memory and core hierarchies of state-of-the-art parallel architectures (GPUs, multi-core CPU, multi-
device and multi-node systems, etc).

The MDH approach (formally) introduces: httpS : //mdh—lang .0rg

1. High-Level Program Representation (Contribution 1) that enables the user conveniently implementing data-parallel
computations, agnostic from hardware and optimization details;

2. Low-Level Program Representation (Contribution 2) that expresses device- and data-optimized de- and re-composition
strategies of computations;

18

WILHELMS-UNIVERSITAT
MUNSTER

Questions?

Ar Rasch
a.rasch@wwu.de

Grateful for any kind of feedback

https://mdh-lang.org https://atf-tuner.org https://hca-project.org

Code Code Code
Generation Optimization Execution

