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Parallel Programming in Today’s World

Parallel programming is hard:
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Challenges: Performance & Portability & Productivity

The Performance challenge:
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Runtime (lower 1s better) of unoptimized vs optimized matrix multiplication
on GPU (left) and CPU (right).

High Performance requires complex optimizations



Challenges: Performance & Portability & Productivity

The Portability challenge:
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Challenges: Performance & Portability & Productivity

The Productivity challenge:

1 __kernel void MatMul( __global const float A[M][K] ,
2 __global const float B[K][N] ,
3 __global float C[M][N] )
4 1

5 int i = get_global_id(0);

6 int j = get_global_id(1);

7

8 for( int k=0 ; k<K ; ++k )

9 CIil[j1 += A[i]l[k] = BIKI[j1;

10 }

Naive OpenCL implementation of matrix multiplication

O O ONUl B~ W N R

10

11
12

13

14
15

__kernel void MatMul( /*x ... %/ )
{

const size t i wg 1.1 = get_group_id(2);
// ... 5 lines skipped

__private TYPE_TS res_pl[/*...x/1[/*...%/1;
{
// ... 7 lines skipped
for (size_t p_iteration_1_1 = 0; p_iteration_1_1 < (2);
++p_iteration_1_1) {
for (size_t p_iteration_1_2 = 0; p_iteration_1_2 < (1)
; ++p_iteration_1_2) {
size_t p_iteration_r_1 = 0;
res_plp_step_1_1][((p_iteration_1_1) * 1 + 0)][(0)]I
p_step_1_2][((p_iteration_1_2) * 1 + Q)] = f(
al(((listep_1_1 x*x (32 / 1) + (((p_step_1_1 =%
(2) + (((p_iteration_1_1) x 1 +0)) / 1) % 1
+ 1 wi 1.1 *x 1+ ((((p_iteration_1_1) *x 1 +
0)) %1))) /1) = (64 x 1) + i_wg_1_1 x 1 +
((((p_step_1_1 * (2) + (((p_iteration_1_1)
*x 1 +0)) /1) 1+ iwi1T1=x1+ ((((
p_iteration_1_1) * 1 + 0)) % 1))) % 1))) *
1024 + (((l_step_r_1 *x (2 / 1) + (((
p_step_r_1 *x (1) + (((p_iteration_r_1) *x 1 +
0)) /1) =1+ iwir 11+ ((((
p_iteration_r_1) * 1 + 0)) % 1))) / 1) * (2
* 1) + iwg_r_1 x 1+ ((((p_step_r_1 x (1) +
(((p_iteration_r_1) * 1 + 0)) / 1) x 1 +
iwir_l =1+ ((((p_iteration_r_1) *x 1 + 0)
) % 1))) % 1)))]1,
// ... 107 lines skipped
}

Optimized OpenCL implementation of matrix multiplication

High Productivity requires automatic optimization




Contributions of this Thesis
This thesis introduces a novel, holistic approach to Generating & Optimizing & Executing code:
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The ultimate goal of MDH+ATF+HCA is to simultaneously achieve
Performance & Portability & Productivity




utline

This talk(/thesis) is structured into three main parts

High-Level Program

Low-Level Program
Representation

Executable

[Kernel void gemv_fst{ _global floats in_matrix,
global floatx in_vector,
global floatx out_vector,

// private memory for a WI's conputation
_private float res_prv

7/ local memory for a WG's computation
“local  float res_lcll NUM_WI_1 ][ NUM_WI_2 1;

Representation

[KerneT void gemv_fst(

global out_vector,

// private memory for a WI's computation
“private float res_prv = 0.0f;

7/ Mocal memory for 3 ¥ate comput

TToats in_matrix,
loats in_vector,
flo:

Program Code

i NVIDIA.

e o CUDA

Host + Program
Code

[CRernel void gemv_fstl

obal Tloats in_matrix,
global floats in_vector,
global floatk out_vector,

// Dr)u(n memory for a WI's computation
rivate float res_prv = 0.0f;
’ p // local memory for a WG's computatic
lon res_tcll NUMWE 11 I NUMWI2 1; L . ocat "Tlont res_tell NI 1T NM_ME_2 1;
// iteration over P_sq blocks // iteration over P_sq blocks e // iteration over P_sq blocks
For( int i_sq =1 ; i.sq <= NUM_SQ_1 ; ++i_sq ) { For( int i_sq =1 ; i.sq <= NUM_SQ_1 ; ++i_sq ) { : o S T e for( int i_sq = 1 ; i_sq <= NUM_SQ_1 ; ++i_sq )
for( int j_sq = 1 ; j_sq <= NUM_SQ_2 ; ++j_sq ) { for( int j_sq =1 ; j_sq NUM_SQ_2 ; ++j_sq ) { WEI02 1 va res 16U MLIO_E 10 W02 + strige 1 for( int j_sq =1 ; NUM_SQ_2 ; ++j_sq ) {
res_prv = 0.0f; res_pry = 0.0f; . res_prv = 0.0f
// sequential computation on a P_wi partition 4/ sequential computation on @ Pui. partition N 1/ sequentisl computation on o Pui partition
or( int 1 II_PART_SIZE_1 ; ++i ) for( int i = WI_PART_SIZE_1 ; ++i ) N l‘ “:m::h“":-w “ for( = WI_PART_SIZE_1 ; ++i )
1 ; j <= WI_PART_SIZE 2 ; ++j ) for( t g 1 ', ] <= WI_PART_SIZE_2 ; ++j ) o % for( M i 1 ] <= WI_PART_SIZE_ 2 ; ++j )
my_p_wi( i, j, @ ) * my_p_wi( i, j, 1); res_prv +=my_p_wi( i, j, @ ) = my_p_wi( i, j, 1); res_prv += my_p_wi( i, j, @ ) * my_p_wi( i, j, 1);
/7 store result in local memory tore result in local memory store result in local memory
res_LcUl WIID_1 1{ WI_ID_2 ] = res_prv; A Fes 1l WEID.a 1L WEI02 12 res_prv; A A res_LcUl WIID_1 1{ WI_ID_2 ] = res_prv;
barrier( CLK_LOCAL_MEM_FENCE : barrier( CLK_LOCAL_MEM_FENCE ); : : barrier( CLK_LOCAL_MEM_FENCE );
1/ conbine the HIs* resutts in dinension x : // conbine the WIs' results in dinension x : RT : 1/ conbine the WIs* results i dinension x
For( int stride = NUWWI_2 / 2 ; stride > 0 ; stride /= 2) H for( int stride = NWWI_2 / 2 ; stride > 0 ; stride /= 2) B - K /a H For( int stride = NWWI_2 / 2 ; stride > 0 ; stride /= 2)
P WIID_2 < str. . if( WI_ID_2 < stride! . i * . $F(WIID_2 < stride
res. \(\[ WI_ID_! 'l ][ WI_ID_2 ] += res_Llcl[ WI_ID_1 ][ WI_ID_2 + stride ]; : res_Lcl[ WI_ID_1 H WI_ID_2 ] += res_lcl[ WI_ID_1 ][ WI_ID_2 + stride ];| : respev = .01 0 cL : res. l(l[ WI_ID_1 ][ WI_ID_2 ] += res_lcl[ WI_ID_1 ][ WI_ID_2 + stride ];
: : L AT o, pen :
barrier( CLK_LOCAL_MEM_FENCE ); . barrier( CLK_LOCAL_MEM_FENCE ); - . barrier( CLK_LOCAL_MEM_FENCE );
¥ - y - e ‘ H ¥
// store WGs' results in global memory - // store WGs' results in global memory N T e - // store WGs' results in global memory
if( WI_ID_2 o D - if( WI_ID_2 o) - - e s - if( WI_ID_2 o
my_res( i_sq ) = res_lcll WI_ID_1 ][e]; my_res( i_sq ) = res_lcl[ WI_ID_1 ][0]; " ke e . my_res( i_sq ) = res_lcl[ WI_ID_1 ][0];
barrier( CLK_LOCAL_MEM_FENCE ); barrier( CLK_LOCAL_MEM_FENCE ); et L
} 7/ end of for-loop j_sq
} // end of for-loop i_sq

£l ( 1 ) )L e ( 2 ) ’ & s ( 3 ) et
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1. Part: How to generate
automatically optimizable (auto-
tunable) code?

3. Part: How to execute
code on (distr.) multi-
dev. systems?

2. Part: How to
automatically optimize
auto-tune) code?




Code Generation via MDH

Overview  Getting Started Code Examples Publications  Citations  Contact

ACM TOPLAS 2024

/\/\ D |_| Multi-Dimensional Homomorphisms (MDH) (De/Re)-Composition of Data-Parallel Computations via

An Algebraic Approach Toward Performance & Portability & Productivity Multi-Dimensional Homomorphisms
for Data-Parallel Computations

ARI RASCH, University of Muenster, Germany

Data-parallel computations, such as linear algebra routines and stencil computations, constitute one of the most
Overview relevant classes in parallel computing, e.g., due to their importance for deep learning. Efficiently de-composing
such computations for the memory and core hierarchies of modern architectures and re-composing the
computed intermediate results back to the final result—we say (de/re)-composition for short—is key to achieve
high performance for these computations on, e.g., GPU and CPU. Current high-level approaches to generating
data-parallel code are often restricted to a particular subclass of data-parallel computations and architectures
device and multi-node systems, etc). (e.g., only linear algebra routines on only GPU or only stencil computations), and/or the approaches rely
on a user-guided optimization process for a well-performing (de/re)-composition of computations, which is
complex and error prone for the user.
We formally introduce a systematic (de/re)-composition approach, based on the algebraic formalism of
1. High-Level Program Representation (Contribution 1) that enables the user conveniently implementing data-parallel Multi-Dimensional Homomorphisms (MDHs). Our approach is designed as general enough to be applicable to
computations, agnostic from hardware and optimization details; a wide range of data-parallel computations and for various kinds of target parallel architectures. To efficiently
2. Low-Level Program Representation (Contribution 2) that expresses device- and data-optimized de- and re-composition target the deep and complex memory and core hierarchies of contemporary architectures, we exploit our
strategies of computations; introduced (de/re)-composition approach for a correct-by-construction, parametrized cache blocking, and
parallelization strategy. We show that our approach is powerful enough to express, in the same formalism, the
3. Lowering Process (Contribution 3) that fully automatically lowers a data-parallel computation expressed in its high-level (de/re)-composition strategies of different classes of state-of-the-art approaches (scheduling-based, polyhedral,
program representation to an optimized instance in its low-level representation, based on concepts from automatic etc.), and we demonstrate that the parameters of our strategies enable systematically generating code that
performance optimization (a.k.a. auto-tuning), using the Auto-Tuning Framework (ATF). can be fully automatically optimized (auto-tuned) for the particular target architecture and characteristics of
the input and output data (e.g., their sizes and memory layouts). Particularly, our experiments confirm that
via auto-tuning, we achieve higher performance than state-of-the-art approaches, including hand-optimized

The approach of Multi-Dimensional Homomorphisms (MDH) is an algebraic formalism for systematically reasoning about de-
composition and re-composition strategies of data-parallel computations (such as linear algebra routines and stencil
computations) for the memory and core hierarchies of state-of-the-art parallel architectures (GPUs, multi-core CPU, multi-

The MDH approach (formally) introduces:

The MDH's low-level representation is designed such that Code Generation from it (e.g., in OpenMP for CPUs, CUDA for

NVIDIA GPUs, or OpenCL for multiple kinds of architectures) becomes straightforward. solutions provided by vendors (such as NVIDIA cuBLAS/cuDNN and Intel oneMKL/oneDNN), on real-world
o o datasets and for a variety of data-parallel computations, including linear algebra routines, stencil and quantum
Linear COntnbtmon M COntnbzunon @ chemistry computations, data mining algorithms, and computations that recently gained high attention due to
Algebra Contribution (3) their relevance for deep learning.
Stencils - - /.-’———"“""_* : : : : ; :
Data ] HL i LL CCS Concepts: « Computing methodologies — Parallel computing methodologies; Machine learning;
Mining — - « Theory of computation — Program semantics; - Software and its engineering —~ Compilers;
OpenCL ’ ’
o e [ e [ [
Chemistry Aut tized Additional Key Words and Phrases: Code generation, data parallelism, auto-tuning, GPU, CPU, OpenMP,
L T Automatize T ‘%l:[ CUDA, OpenCL, linear algebra, stencils computation, quantum chemistry, data mining, deep learning
(via Auto-Tuning)
User-Defined Straightforward A full version of this article is provided by Rasch [2024], which presents our novel concepts with all of their formal details. In
) ) ) contrast to the full version, this article relies on a simplified formal foundation for better illustration and easier understanding.
Our Experiments report encouraging results on GPUs and CPUs for MDH as compared to state-of-practice approaches, We often refer the interested reader to Rasch [2024] for formal details that should not be required for understanding the
including NVIDIA cuBLAS/cuDNN and Intel oneMKL/oneDNN which are hand-optimized libraries provided by vendors. basic ideas and concepts of our approach.
This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—project PPP-DL
(470527619).

Author’s Contact Information: Ari Rasch (Corresponding author), University of Muenster, Muenster, Germany; e-mail:
u —_—
h t t p S [} / / md h .L a n g n o rg a.rasch@uni-muenster.de.




Code Generation via MDH

MDNH is a (formal) framework for expressing & optimizing data-parallel computations:

1.

3.

: Contribution (1) Contribution (2)
Linear : ; OpenMP
Algebra Contribution (3)
. 5 CUDA
Data Stencils
Mining

OpenCL

Quantum
Chemistry

Automatized
T (via Auto-Tuning) T
User Defined Straightforward

Contribution 1 (HL-REP): defines data parallelism & introduces higher-order functions for expressing data-
parallel computations, agnostic from hardware and optimization details while still capturing high-level
information relevant for generating high-performing code

Contribution 2 (LL-REP): allows expressing and reasoning about optimizations for the memory and core
hierarchies of contemporary parallel architectures & generalizes these optimizations to apply to arbitrary
combinations of data-parallel computations and architectures

Contribution 3 (—): introduces a structured optimization process — for arbitrary combinations of data-
parallel computations and parallel architectures — that allows fully automatic optimization (auto-tuning)

10



Code Generation via MDH

Example: MatVec expressed in MDH

<TeTYPE | I,KeN>

MatVec = out view<T>( w:(i,k)—~(i) ) o

md hom<I,K>(*, (#,+)) o

inp view<T,T>( M:(i,k)~(i,k) ,v:(i,k)—~(k) )

High-Level Representation of MatVec

What is happening here:

e 1np_view captures the accesses to input data

 md_hom expresses the data-parallel computation

« out_view captures the accesses to output data

"We can generate such MDH expressions also automatically from straightforward (annotated) code in Python or C

11



Code Generation via MDH

inp_view out_view
mdhom | f|® |® |® |®  Views A | B C
Dot x|+ ]| ] Dot ® - (k) ® ~ (k) @ - O md_hom [ £]®1 | ® | @] @] @ | ® | 07| ®s| | @
MatVec * | ++ + s s MatVec (i,k) » (i,k) (i,k) » (k) (i,k) » (1) Conv2D * | ++ | ++ + + y y y y y ,
MatMul * ++ ++ + / MatMul (l,J,k) = (l,k) (l,J,k) L d (k,J) (l,J,k) L d (l,J) MCC * ++ ++ ++ ++ + + + , , Y
MatMul® || * | ++ [ ++ | + | MatMul® || (i,j,k) ~ (k,i) (i,j,k) = (,k) (i,j,k) = (§,1) MCC Capsule || * | ++ | ++ | ++ | ++ |+ | =
oMatMul || * | ++ | ++ | ++ | + bMatMul || (b,i,i,k) ~ (b,i,k) | (b,i,j,k) = (b,k,j) | (b,i,j,k) — (b,i,])
1) Linear Algebra Routines
inp_view out_view
Views I ‘ F 0
inp_view out_view Conv2D (p,q,r,s) — (p+r,q+s) (p,q,r,s) =~ (r,s) (p,q,r,8) = (p,q)
md_hom H £ ‘ @1 ‘ ®9 Views A Out MCC (n,p,...) +~ (n,ptr,g+s,c) (n,p,...) +~ (k,r,s,c) (n,p,...) +~ (n,p,q,k)
MBBS “id ‘++mmfhkmm(+) ‘ + MBBS “(i,j) - (i,3) ‘(i) - (i) MCC_Capsule || (n,p,...) = (n,p+r,g+s,c,cm,ck) | (n,p,...) +~ (k,r,s,c,ck,cn) | (n,p,...) +~ (n,p,q,k,cm,cn)
8) Maximum Bottom Box Sum 2) Convolution Stencils
inp_view out_view
md_hom H f ‘ @1‘ ®9 Views I 0 inp_view out_view
JacobilD [ Jp | ++ | ~ JacobilD || (i) ~ (i+0) , (i) » (i+1) , (i) = (i+2) [ (1) » (1) mdhom || £ [@ | & Views N | E M
Jacobi2D || Jpp | ++ | ++  Jacobi2D || (i,j) ~ (i,3+1) , (i,j) ~ G+1,j) , G,5) ~» G,9) PRL || wght | ++ |maxpr  PRL | (i,5) » (D | (5,5 » (D] 1,5 » (D)
3) Jacobi Stencils 4) Probabilistic Record Linkage
inp_view out_view
inp view out_view md hom || f | @1 Views I 0
md_hom H ®1 Views I 01 ‘ 02 scan(®) H id‘ ++pnﬁixﬂum(@) scan(®) H (1) +~ (i)‘ (1) » (1)
map (£) ++ map (£) (1) » (1) | (1) » (1) /
reduce (®) id ® reduce (®) @) » W@ » 0O P 7) Scan Pattern
reduce(®,®) || (x) » (x,x) | (&,®) reduce(®,®) || (1) » (1) | () » O 1) ~» O

6) Map/Reduce Patterns

inp_

view

out_view

mdhom || £ [® |®  Views

Bins

Elems

Out

Histo || faisto | ++ | +

5) Histogram

MDH is capable of expressing a wide range of
data-parallel computations from popular domains

Histo | (b,e) = () | (b,e) = (&) [ (b,e) ~ (b)

12



Code Generation via MDH

Performance Evaluation: (via runtime comparison)

NVIDIA Ampere GPU

Deep ResNet-50 VGG-16 MobileNet
Lealw1ing Training Inference Training Inference Training i Inference
MCC MatMul MCC MatMul MCC MatMul MCC MatMul MCC MCC
TVM+Ansor 1.00 1.26 1.05 2.22 0.93 1.42 0.88 1.14 0.94 1.00 nVIDIA®
PPCG 3456.16: 8.26 - 7.89 :1661.14: 7.06 5.77 5.08 2254.67 7.55
MDH speedup over
PPCG+ATF 3.28 2.58 13.76 5.44 4.26 3.92 9.46 3.73 3.31 10.71 i i
CUDNN 0.92 - 1.85 - 1.22 - 1.94 - 1.81 2.14 e TVM: 0.88x — 2.22x
BLAS - 1.58 - 2.67 - 0.93 - 1.04 - -
- e PPCG: 2.58x — 13.76xX
CUBLASEXx - 1.47 - 2.56 - 0.92 - 1.02 - -
CUBLASLt - 1.26 - 1.22 - 0.91 - 1.01 - - * (CUBLAS/CUDNN: 9.91x - 2. 67X)
Intel Skylake CPU
Deep ResNet-50 VGG-16 MobileNet
Lear11ing Training Inference Training Inference Training :Inference u ®
MCC MatMul MCC MatMul MCC MatMul MCC MatMul MCC MCC lntel
TVM+Ansor 1.53 1.05 1.14 1.20 1.97 1.14 2.38 1.27 3.01 1.40
Pluto 355.81 | 49.57 | 364.43 | 13.93 | 130.80 | 93.21 | 186.25 | 36.30 152.14 75.37
MDH speedup over
Pluto+ATF 13.08 19.70 | 170.69 6.57 3.11 6.29 53.61 8.29 3.50 25.41 ’ ’
oneDNN 0.39 - 5.07 - 1.22 - 9.01 - 1.05 4.20 o TVM . 1 u @5 - 3 u ®1X
oneMKL - 0.44 - 1.09 - 0.88 - 0.53 - - ° P-LUtO: 6.29x — 364.43x
oneMKL (JIT) - 6.43 - 8.33 - 27.09 - 9.78 - -
e (oneMKL/oneDNN: 0.39x — 9.01x)

Significantly higher speedups for other case studies,

e.q., >170x over TVM on GPU already for straightforward dot products

13



Code Optimization via ATF

Overview  Getting Started Code Examples Publications  Citations  Contact

ﬁ Auto-Tuning Framework (ATF)

Efficient Auto-Tuning of Parallel Programs with

Overview

The Auto-Tuning Framework (ATF) is a general-purpose auto-tuning approach: given a program that is implemented as
generic in performance-critical program parameters (a.k.a. tuning parameters), such as sizes of tiles and numbers of
threads, ATF fully automatically determines a hardware- and data-optimized configuration of such parameters.

Key Feature of ATF

A key feature of ATF is its support for Tuning Parameter Constraints. Parameter constraints allow auto-tuning programs
whose tuning parameters have so-called interdependencies among them, e.g., the value of one tuning parameter has to
evenly divide the value of another tuning parameter.

ATF's support for parameter constraints is important: modern parallel programs target novel parallel architectures, and such
architectures typically have deep memory and core hierarchies thus requiring constraints on tuning parameters, e.g., the
value of a tile size tuning parameter on an upper memory layer has to be a multiple of a tile size value on a lower memory
layer.

For such parameters, ATF introduces novel concepts for Generating & Storing & Exploring the search spaces of constrained
tuning parameters, thereby contributing to a substantially more efficient overall auto-tuning process for such parameters, as
confirmed in our Experiments.

Generality of ATF

For wide applicability, ATF is designed as generic in:

1. The target program's Programming Language, e.g., C/C++, CUDA, OpenMP, or OpenCL. ATF offers pre-implemented
cost functions for conveniently auto-tuning C/C++ programs, as well as CUDA and OpenCL kernels which require host
code for their execution which is automatically generated and executed by ATF's pre-implemented CUDA and OpenCL
cost functions. ATF also offers a pre-implemented generic cost function that can be used for conveniently auto-tuning
programs in any other programming language different from C/C++, CUDA, and OpenCL.

ACM TACO 2021

https://atf-tuner.org

Efficient Auto-Tuning of Parallel Programs with
Interdependent Tuning Parameters via Auto-Tuning
Framework (ATF)

ARI RASCH and RICHARD SCHULZE, University of Muenster, Germany
MICHEL STEUWER, University of Edinburgh, United Kingdom
SERGEI GORLATCH, University of Muenster, Germany

Auto-tuning is a popular approach to program optimization: it automatically finds good configurations of a
program’s so-called tuning parameters whose values are crucial for achieving high performance for a par-
ticular parallel architecture and characteristics of input/output data. We present three new contributions of
the Auto-Tuning Framework (ATF), which enable a key advantage in general-purpose auto-tuning: efficiently
optimizing programs whose tuning parameters have interdependencies among them. We make the following
contributions to the three main phases of general-purpose auto-tuning: (1) ATF generates the search space
of interdependent tuning parameters with high performance by efficiently exploiting parameter constraints;
(2) ATF stores such search spaces efficiently in memory, based on a novel chain-of-trees search space structure;
(3) ATF explores these search spaces faster, by employing a multi-dimensional search strategy on its chain-
of-trees search space representation. Our experiments demonstrate that, compared to the state-of-the-art,
general-purpose auto-tuning frameworks, ATF substantially improves generating, storing, and exploring the
search space of interdependent tuning parameters, thereby enabling an efficient overall auto-tuning process
for important applications from popular domains, including stencil computations, linear algebra routines,
quantum chemistry computations, and data mining algorithms.

CCS Concepts: « General and reference — Performance; - Computer systems organization — Paral-
lel architectures; « Software and its engineering — Parallel programming languages;

Additional Key Words and Phrases: Auto-tuning, parallel programs, interdependent tuning parameters

ACM Reference format:

Ari Rasch, Richard Schulze, Michel Steuwer, and Sergei Gorlatch. 2021. Efficient Auto-Tuning of Parallel
Programs with Interdependent Tuning Parameters via Auto-Tuning Framework (ATF). ACM Trans. Archit.
Code Optim. 18, 1, Article 1 (January 2021), 26 pages.
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Code Optimization via ATF

Advantage of ATF over state-of-the-art general-purpose AT approaches:

ATF tinds values of performance-critical parameters with

interdependencies among them

via optimized processes to

generating & storing & exploring
the spaces of interdependent parameters

— We illustrate ATF by comparing it to MIT’'s OpenTuner [PACT’14] & CLTune [MCSoC’15]
which is the foundation of many related approaches (e.g., KernelTuner & KTT).

Note: BaCO [ASPLOS23] & KITT recently adopted the ATF techniques to also efficiently handle
interdependent tuning parameters.
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Code Optimization via ATF

How does ATF achieve its efficiency for interdependent tuning parameters:

ATF introduces
parameter constraints

tuner.addParameter( “tp_1", T1 );
tuner.addParameter( “tp_2", T2 );

2T ATF
CoT search space

SP :=[(1,1) | (2,1) | (2,2) | = ]

CLTune search space

[1(T1 tp_1, T2 tp_2, —3 | search space (CLTune)
{ /% «o. %/ } vs. parameters (ATF) verbose & 1D (CLTune)
vs. compact & nD (ATF)

tuner.addConstraint( Defined on:
w ) > b001¢

CLTune constraints | |
tuner.addParameter( “tp_1", R1, [1(T1 tp_1) —> bool { /*x .. x/ } );
tuner.addParameter( “tp_2", R2, [1(T2 tp_2) —> bool { /* .. x/ } );

ATF constraints

ATF introduces a novel

constraint design and search space structure
to efficiently generate & store & explore constrained search spaces

16



Highlights only

Code Optimization via ATF

ATF is able to auto-tune modern parallel computations, e.qg., for GPUs & CPUs:

EStencilJ

ATF is able to auto-tune CONV to:

>40x higher performance >104x higher performance
than CONV+CLTune than CONV+CLTune
on CPU on GPU

>3x higher performance >15x higher performance
than Intel MKL-DNN than NVIDIA cuDNN

on CPU (i@ on GPU

[Quantum Chemist ryj

ATF is able to auto-tune CCSD(T) to:

>2X higher performance ClLTune fails!

than Facebook TC (too high search space
on GPU generation time)

E_inear Algebnﬂ

ATF is able to auto-tune GEMM to:

NVIDIA.

>2X higher performance >120x higher performance
than GEMM+CLTune than GEMM+CLTune
on CPU on GPU

>2x higher performance >2x higher performance
than Intel MKL than NVIDIA cuBLAS
on CPU inte)) on GPU

[Data Minin&]

ATF is able to auto-tune PRL to:

NVIDIA.

>1.6x higher performance >1.07x higher perform.
than PRL+CLTune than PRL+CLTune
on CPU on GPU

OpenTuner fails for all studies .



Code Execution via HCA

Overview Contact

Host Code Abstraction (HCA)

A High-Level Abstraction for Host Code Programming
Designed for Distributed, Heterogeneous Systems

Overview

The Host Code Abstraction (HCA) is a high-level programming abstraction that simplifies implementing and optimizing so-
called host code which is required in modern parallel programming approaches (e.g., CUDA and OpenCL) to execute code on
the devices of distributed, heterogeneous systems.

More details will follow soon!

Contact

Journal of Supercomputing 2019

https://hca-project.org

Skipped for br

The Journal of Supercomputing (2020) 76:5117-5138
https://doi.org/10.1007/511227-019-02829-2

=

Check for
updates

dOCAL: high-level distributed programming with OpenCL
and CUDA

Ari Rasch'® . Julian Bigge' - Martin Wrodarczyk’ - Richard Schulze -
Sergei Gorlatch'

Published online: 30 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

In the state-of-the-art parallel programming approaches OpenCL and CUDA, so-
called host code is required for program’s execution. Efficiently implementing host
code is often a cumbersome task, especially when executing OpenCL and CUDA
programs on systems with multiple nodes, each comprising different devices, e.g.,
multi-core CPU and graphics processing units; the programmer is responsible for
explicitly managing node’s and device’s memory, synchronizing computations
with data transfers between devices of potentially different nodes and for optimiz-
ing data transfers between devices’ memories and nodes’ main memories, e.g.,
by using pinned main memory for accelerating data transfers and overlapping the
transfers with computations. We develop distributed OpenCL/CUDA abstraction
layer (dOCAL)—a novel high-level C++ library that simplifies the development of
host code. dOCAL combines major advantages over the state-of-the-art high-level
approaches: (1) it simplifies implementing both OpenCL and CUDA host code by
providing a simple-to-use, high-level abstraction API; (2) it supports executing arbi-
trary OpenCL and CUDA programs; (3) it allows conveniently targeting the devices
of different nodes by automatically managing node-to-node communications; (4) it
simplifies implementing data transfer optimizations by providing different, specially
allocated memory regions, e.g., pinned main memory for overlapping data transfers
with computations; (5) it optimizes memory management by automatically avoid-
ing unnecessary data transfers; (6) it enables interoperability between OpenCL and
CUDA host code for systems with devices from different vendors. Our experiments
show that dOCAL significantly simplifies the development of host code for hetero-
geneous and distributed systems, with a low runtime overhead.
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Summary

The MDH+ATF+HCA approach achieves Performance & Portability & Productivity for data-parallel

computations targeting modern parallel architectures:

TOWARD
PERFORMANCE & PORTABILITY & PRODUCTIVITY
IN PARALLEL PROGRAMMING

A Holistic Code Generation, Optimization, and Execution Approach
for Data-Parallel Computations Targeting Modern Parallel Architectures

Inaugural Dissertation
for the Award of a Doctoral Degree
Dr. rer. nat.
in the Field of Mathematics and Computer Science
from the Faculty of Mathematics und Natural Sciences
of the University of Miinster, Germany

submitted by

ARI RASCH

born in Essen, Germany
—2024 —

The MDH+ATF+HCA approach:

High-Level Program Low-Level Program Executable Host + Program
Representation Representation Program Code Code
:" 2{ ﬂ S =
MDH % ATF . HCA
A A - A
(1) (2) e (3)
Generation Optimization Execution
[TOPLAS’ 24, [TACO’21, CCPE’19, [JOS’19,
PACT’19, IJPP’18] HPCC’17] ICPADS’18]

e The three sub-projects — MDH & ATF & HCA — complement

each other to a holistic code Generation & Optimization &
Execution approach

e There are many (promising) future directions for
MDH & ATF & HCA (one part of thesis dedicated to FW)
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