— " = Universitit
Munster

& sc25

St.Louis, | hpc
MO |ignites.

Reduction-Aware Directive-Based
Programming
via Multi-Dimensional Homomorphisms

Richard Schulze, Sergei Gorlatch, Ari Rasch
University of Munster, Germany

Who are we?

Compilers for Al & HPC — our research projects:

https://arirasch.net ¥
a.rasch@uni-muenster.de BESS

https://mdh-lang.org

NMOH

Code Generation

https://atf-tuner.or

AlE

Code Optimization

https://richardschulze.net
r.schulze@uni-muenster.de

Hunloh Brothers
(Lars & Jens)

Richard
Schulze

mailto:r.schulze@uni-muenster.de
mailto:a.rasch@uni-muenster.de

Message of this Talk

Reductions are ubiquitous:

Linear Algebra
def matmul(A, B, I, J, K):

C =1[[0.0 for _ 1in range(J)] for
for i in range(I):
for j in range(J):

for k in r) ¢
C[i][j1iff:F[i][k] * B[k][J]
return C

Deep Learning

__1n range(I)]

def mcc(img,
res = [[

flt, N, P, Q,

K, R, S, C):

[[0.0 for _ in range(K)] for

_ in range(Q)]

for in range(P)] for

__1in range(N)]

for n in range(N):
for p in range(P):
for g in range(Q):
for k in range(K):
for r in range(R):
for s in range(S):
for ¢ in range(C):

reS[n][P][q][kq‘:;Jk
img[n][(2*p [(2*q)+s][c] *

flt(k]l[r][s][c]

return res

Algorithmic

def mbbs(I, J):
O =10.0 for
prefix = 0.0

__in range(I)]

for i in range(I):
row sum = 0.0

for j in r) ¢
row_suﬁ[i] [7]
prefi Oow_sum
o[i] = fix

return O

... (Quantum Chemistry, Data Mining, etc)

often use more complex

reduction operators than +=

Awareness of reductions in directive-based programming can

significantly enhance performance

State-of-the-Art Directive-Based Approaches

Analysis of the state of the art focussing on their reduction handling:

Polvyhedral Compilers PPCG & Pluto:

void matvec_poly(const T *M, const T *v, T *w) {

#pragma scop
for (int i1 = 0; i < I; i++) {

wli] = 0.0f;

for (int k = 0; k < K; k++) {

wli]l += M[i * K + k] * v[k];

}

}

#pragma endscop

Fully automatic & formal foundation,
but lack reduction-operator semantics

Numba:
def matvec_numba_cpu(I, K):
@njit(parallel=True)
def matvec__I_K(w, M, v):
for i in range(I):
wli] = 0.0
for k in range (K):
wli]l += M[i, k] * v[kl]
return matvec__I_K

Fully automatic & Python-based,

but lacks reduction-operator semantics &
limited GPU productivity

OpenMP (& OpenACCQC):

void matvec_openmp(const T* M, const T* v, T*x w)
{
#pragma omp parallel for
for (int i = 0; 1 < I; ++i) {
T sum = 0.0f;

#pragma omp simd reduction(+:sum)
for (int k = 0; k < K; ++k) {
sum += M[i * K + k] % v[k];
}
wli]l = sum;

I

Productive,
but limited reduction-operator semantics

All approaches:

Further performance potential
(also for reduction-free computations)

Contribution of this Work

Introduce reduction-aware directive addressing limitations of state of the art:

Directive name: @mdh explained and motivated later)

def[;;tvec(T:BasicType, I:int ,K:int):
@mdh(out(w
inp(M
combine_ops(cc, pw(add))e—
def mdh_matvec__T_I_K(w, M,v):
for 1 in range(I):
for k in range(K):
wli] = M[i,k] * v[kl]
return mdh_matvec__T_I_K

Buffer[T] e——
Buffer[T], v = Buffer[T])¢

Declaration of output data:
name & basic type

) Declaration of input data:
name & basic type

Expressing reductions:

Key Strength:

- Explicit representation of reduction operators

cc (concatenation) &
pw(add) (pointwise via addition)

- Supports arbitrary, user-defined reductions (cc & pw are pre-implemented)

- Python-based interface

Our MDH directive is designed to efficiently express reductions

Excursion: User-Defined Operators

Explicit implementation of reduction operator concatenation (cc):

def cc(T:ScalarType, D:int, d:int): Name
@combine_operator(
index_set_function = lambda I: I,
scalar_type =T,
i mens densill by - D, < Meta Parameters
operating_dimension = d
) I Input Sizes (generic)

def cc__T_D_d(I, P,Q):
def cc__T_D_d__I_PQ(res, lhs,rhs):

Output & Inputs

for i[1,...,d-1] in I[1,...,d-11]:
for i[d+1,...,D] in I[d+1,...,D]:

lterating over Lhs & rhs

for i[d] 1in P:

res[i[1,...,d,...,D]] = — :
1hs[if1,....d,....D] I Writing Lhs consecutively to res
for i[d] in Q:
resl i[1,...,d,...,D]] = — :
rhs[i[1,....d.....01 1 Writing rhs consecutively to res

return cc__T_D_d__I_PQ

return cc__T_D_d

Our interface for custom operators is expressive (but may require some familiarization)

Code Generation

How to generate high-performance executable code (e.d., in CUDA) from our
reduction-aware, directive-annotated Python programs:

ACM TOPLAS 2024

Overview Getting Started Code Examples Publications Citations Contact (De/Re)'ComPOSitiOI’l of Data-Parallel Computations via
Multi-Dimensional Homomorphisms

ARI RASCH, University of Muenster, Germany

Multi-Dimensional Homomorphisms (MDH)
[\/\ D l—l An Algebraic Approach Toward Performance & Portability & Productivity Data-parallel computations, such as linear algebra routines and stencil computations, constitute one of the most
for Data-Parallel Computations relevant classes in parallel computing, e.g., due to their importance for deep learning. Efficiently de-composing

such computations for the memory and core hierarchies of modern architectures and re-composing the
computed intermediate results back to the final result—we say (de/re)-composition for short—is key to achieve
high performance for these computations on, e.g., GPU and CPU. Current high-level approaches to generating
. data-parallel code are often restricted to a particular subclass of data-parallel computations and architectures
Overview (e.g., only linear algebra routines on only GPU or only stencil computations), and/or the approaches rely
on a user-guided optimization process for a well-performing (de/re)-composition of computations, which is
complex and error prone for the user.

We formally introduce a systematic (de/re)-composition approach, based on the algebraic formalism of
Multi-Dimensional Homomorphisms (MDHs). Our approach is designed as general enough to be applicable to
a wide range of data-parallel computations and for various kinds of target parallel architectures. To efficiently

The approach of Multi-Dimensional Homomorphisms (MDH) is an algebraic formalism for systematically reasoning about de-
composition and re-composition strategies of data-parallel computations (such as linear algebra routines and stencil
computations) for the memory and core hierarchies of state-of-the-art parallel architectures (GPUs, multi-core CPU, multi-
device and multi-node systems, etc).

The MDH approach (formally) introduces: target the deep and complex memory and core hierarchies of contemporary architectures, we exploit our
introduced (de/re)-composition approach for a correct-by-construction, parametrized cache blocking, and

1. High-Level Program Representation (Contribution 1) that enables the user conveniently implementing data-parallel parallelization strategy. We show that our approach is powerful enough to express, in the same formalism, the
computations, agnostic from hardware and optimization details; (de/re)-composition strategies of different classes of state-of-the-art approaches (scheduling-based, polyhedral,

etc.), and we demonstrate that the parameters of our strategies enable systematically generating code that
can be fully automatically optimized (auto-tuned) for the particular target architecture and characteristics of
the input and output data (e.g., their sizes and memory layouts). Particularly, our experiments confirm that
. ived i i its low-level o based] . via auto-tuning, we achieve higher performance than state-of-the-art approaches, including hand-optimized
program represe.r1te.1t|or.1 to an optimize |n§tance .|n its low-leve re}presentatlon, ased on concepts from automatic solutions provided by vendors (such as NVIDIA cuBLAS/cuDNN and Intel oneMKL/oneDNN), on real-world
performance optimization (a.k.a. auto-tuning), using the Auto-Tuning Framework (ATF).

datasets and for a variety of data-parallel computations, including linear algebra routines, stencil and quantum

chemistry computations, data mining algorithms, and computations that recently gained high attention due to

2. Low-Level Program Representation (Contribution 2) that expresses device- and data-optimized de- and re-composition
strategies of computations;

3. Lowering Process (Contribution 3) that fully automatically lowers a data-parallel computation expressed in its high-level

The MDH's low-level representation is designed such that Code Generation from it (e.g., in OpenMP for CPUs, CUDA for

NVIDIA GPUs, or OpenCL for multiple kinds of architectures) becomes straightforward. their relevance for deep learning.
) Contribution (1) Contribution (2) - \ CCS Concepts: « Computing methodologies — Parallel computing methodologies; Machine learning;
B resndil] Openier « Theory of computation — Program semantics; » Software and its engineering — Compilers;
e Contribution (3) y o UL X
[senciis : . ' + oA Additional Key Words and Phrases: Code generation, data parallelism, auto-tuning, GPU, CPU, OpenMP,
L - . 4
nisgeg L& : " HL 2 > LL Y CUDA, OpenCL, linear algebra, stencils computation, quantum chemistry, data mining, deep learning
e 1 RreP ; REP
Quantum | | — -
r p (e . ~— v . A full version of this article is provided by Rasch [2024], which presents our novel concepts with all of their formal details. In
- ’ . A"rom":""(‘"ﬁ T q - | contrast to the full version, this article relies on a simplified formal foundation for better illustration and easier understanding.
Rl (via Auto-Tuming) - We often refer the interested reader to Rasch [2024] for formal details that should not be required for understanding the
UserDefined Straghtforward basic ideas and concepts of our approach.
This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—project PPP-DL
Our Experiments report encouraging results on GPUs and CPUs for MDH as compared to state-of-practice approaches, (470527619).
including NVIDIA cuBLAS/cuDNN and Intel oneMKL/oneDNN which are hand-optimized libraries provided by vendors. Author’s Contact Information: Ari Rasch (Corresponding author), University of Muenster, Muenster, Germany; e-mail:

a.rasch@uni-muenster.de.

https://mdh-1lang.org

Exploit MDH Approach for driving Code Generation and Optimization

The MDH Approach

MDNH is a (formal) framework for expressing & optimizing data-parallel computations:

: Contribution (1) Contribution (2)
Linear : : OpenMP
Algebra Contribution (3)
. 5 CUDA
Data Stencils
Mining

OpenCL

Quantum
Chemistry

Automatized
T (via Auto-Tuning) T
User Defined Straightforward

MDH generates high-performance code for programs expressed in its High-Level Representation:

<TeTYPE|I,KeN>
MatVec | =

out view<T>(w:(i,k)~(i)) o
md hom<I,K>(x*, (#,+)) o
inp view<T,T>(M:(i,k)~(i,k),v:(i,k)~(k))

MDH High-Level Representation of MatVec

What is happening here:

1np_view captures the accesses to input data out_view captures the accesses to output data

md_hom expresses the data-parallel computation (incl. reductions)

Key Transformation

Transform our MDH-directive-annotated Python programs into MDH-DSL representation:

Python Program

EIIDH DSL Progranﬂ
i

+ |"=essesssssssssmsssssssssssssssssssssssssssssssdessssssssesNessssssEsssEsssssssEsssEEEE—-y
I I emdh(..) :
MDH Directive (e,
W return (
: ; out_yiew[BSCITYP, ..., BSC_TYP I(
@mdh (out (IDF = Buffer[BSCLTYP], ..., IDF = Buffer[BSCLTYP]), ; —
: : : : 1 i #OB-times
o P #OB-:c(imgs_i___l _____ T IbF = E[IDX_FNC, IDX_FNC]E
inp (IDFi= Buffer[BSC_TYP], . . .,:IDFi= Buffer[BSC_TYPI]) : OB e :
...................................... 0
‘ #IB-times : : : - #OB-times
combine_ops(CO,..., Co) IDF = [IDX_FNG, ..., IDX_FNC]}) ,
—_— ! - :
D-times OB _..
def IDF(...) #ACCopmtimes
' for IDF in range(SIZE) 5 .
) , md_Hom[SIZE;...,SIZE](SF, (CO,...,C0)), "J
: D-times | —_—— :
for IDF in range(SIZE) O-times Drtimes
: . A I
IDF[IDX_FNC, ..., IDX_FNC], ..., IDF[}DX_FNC, .+ IDX_FNC] inp_yiew BECTIF; ... BECITBE-
#ACC?B—times #AccggB—times _+ _ #IB-times
_ IDF: = [IDXZENG . . ., IDXZFNCie---
= SF(OB - - - SRR
IDF [EDXEENG: EDXERNG], - ... IDF [IDXEENG - . .. EDXRENG]) i - paccIB-tines
#ACC{B—times : i#ACCi?B—timesi _v #1B-times
: : i :IDF: = [[DXIRENG TOXERNGY) :
tttete _ A A i
#ACCIB_ -times

#IB

Our MDH-annotated Python code captures all input-relevant

building blocks of the MDH-DSL program

Key Transformation

Transform our MDH-directive-annotated Python programs into MDH-DSL representation:

Python Program BIIDH DSL Program
T — T
MDH Directive emdh(...)
- def IDF():
""""""""""""""""""""""""" return (v
..................................... out VleWL'B'_S'_C'_'_T'_Y_FS_., b :I§_'§ZC'_'_'_T'_\'{'E"_](
emdh (out (IDF = Buffer[BSC_TYP], . IDF = Buffer[iBSC_ TYP]) :
R 00 ;[A WJOBotimes
. HO0B-times IDF: = [.ID.X_A.EN_C_ ------ _I.DX_.EN_C.]
inp (IDF = Buffer[BSC_TYP], ..., IDF = Buffer[BSC_TYP]), g#Acch e
#IB-times #0B-times
combine_ops(CO,..., Co)
| —
D-times
def IDF(...)
' for IDF in range(SIZE) : : : l
. . : md_hom[SIZE,..., ,SIZE](SF, (CO Co))
: D-times ; — FN———
for IDF in range(SIZE) L > tlmes‘ : oremes
IDF[.I.D_X--EN.C .I.Q).(--I_:.N.Q] ----- IDF[:.[.DX..ENC -, EDXCENG] inp_view[BSC_TYP,: .., BSC TYP](
 #ACCOB-times : #ACCOD -t imes #16-times |
- SF(! : IDF = [IDXJFNC, IDX_;FNC]
IDF[IDXSFNC, ..., IDX.FNC], ..., IDF[IDX_FNC, ..., IDX_FNC]) E#ACC}B-timesé
#AcCIB-times #accIB times Do #IB-times
: : IDF = [IDXFNC, . , IDX.. FNC])
#IB

#ACCIB tlmes

Our MDH-annotated Python code captures all output-relevant

building blocks of the MDH-DSL program

10

Key Transformation

Transform our MDH-directive-annotated Python programs into MDH-DSL representation:

Python Program EIIDH DSL Program

+ T
MDH Directive endh(...)
- def IDF():
return (
out_view[BSC_TYP, ..., BSC_TYP 1(
@mdh (out (IDF = Buffer[BSC_TYP], . . ., IDF = Buffer[BSC_TYP]), ~ :
#0B-times
OBt imes IDF = [IDX_FNG, ..., IDX_FNC]
inp (IDF = Buffer[BSC_TYP], ..., IDF = Buffer[BSC_TYP]), rccOB times '
1 :
‘ . L #TB-times : . 1 #0B-times
combine_ops ({0, ..,C0)) IDF = [IDX_FNG, ..., IDX_FNC])i ,
I bveeeeseeeen vemeoseeees OO O -~
i D-times 0B _,: :
L’ for IDF in range(SEZE) : v . . A ‘J
) . 5 md_hom [SIZE, . . . ,88ZE1 (SF:, (CO,..., co)),
- D-times ' e iy 'K' ‘ [ttt o'
for IDF in range (SIZE)--- ornes Jrnes
EIDF[EDX_FNC, .. IDXCFNC], -2, IDF]_—EDX_FNC, IDX_FNC:_[inp_view[BSC_TYP, ..., BSC_TYP 1(
: #ACC?B—times #AccggB—times #IB-times |
= SF (e ADE = [IDX_FNG, ..., IDX_FNC]
EIDF[IDX_FNC, .., IDX_FNC], ..., IDF[IDX_FNC, ..., IDX_FNC]): #Acc{?_umes
#ACCIB-times #AcCIB_ -tines ° (#IB-times
-- IDF = [IDX_FNG, ..., IDX_FNC])
#ACCIB —times

#IB

Our MDH-annotated Python code captures all computation-relevant

building blocks of the MDH-DSL program

11

Experimental Results

Case Studies & Data Characteristics:

Computation Characteristics Data Characteristics

Computation | Iter. Space Red. Dim. | Data Acc. | Inp. Sizes Basic Type Domain
Dot 1D v/ Inj. 1 2% 2% fp32 Simulation

2 10’ 10’ fp32 Simulation
MatVec 2D v Non-Inj. 1 4096x4096 4096 fp32 Simulation

2 8192x8192 8192 fp32 Simulation
MatMul 3D v/ Non-In;j. 1 1024x1024 1024x1024 fp32 Simulation

2 1x2048 2048x1000 fp32 Deep Learning
MatMulArT 3D v Non-In;j. 1 64x10 500x64 fp32 Deep Learning
bMatMul 4D v Non-In;j. 1 16x10x64 16x64x500 fp32 Deep Learning
Gaussian_2D 2D Non-Inj. 1 224x224 fp32 Image Processing

2 4096x4096 fp32 Image Processing
Jacobi_3D 3D Non-Inj. 1 254x254x254 fp32 Simulation

2 510x510x510 fp32 Simulation
PRL 2D v Non-In;j. 1 2" 2% {int64, chr46, fp64, ...} Data Mining

2 2% 2" {int64, chr46, fp64, ...} Data Mining
CCSD(T) 7D v/ Non-Inj. 1 24x16x16x16 24x16x24x24 fp32 Quantum Chem.

2 24x16x24x16 24x16x24x16 fp32 Quantum Chem.
MCC 7D v Non-In;j. 1 1x512x7x7 512x512x3x3 fp32 Deep Learning

2 1x230x230x3 64Xx7x7x3 fp32 Deep Learning
MCC_Caps 10D v/ Non-In;j. 1 16x230x230x3x4x4 64X7X7x3x4x4 fp32 Deep Learning

2 1x230x230x3x4x4 | 67X7X7x3x4x4 fp32 Deep Learning

Evaluation across real-world case studies

and data characteristics

12

Linear Algebra:

Experimental Results

GPU: [l OpenACC Il PPCG [PPCG+ATF [] Hand Optimized (cuBLAS, cuDNN)
OURs ClTvm —
CPU: BopenvP | [l Pluto [Pluto+ATF] Numba [] Hand Optimized (oneMKL, oneDNN, EKR)
NVIDIA Ampere GPU Intel Skylake CPU
Dot MatVec Dot MatVec
36 n N 36
N 0
o o <
o N ; N ©
= - n Q S
g M < ~ " o m M
8 ~ o X iy o N o
7, T T T T — - H - = g
Inp. Inp. 2 Inp. 1 Inp. 2 Inp. 1 Inp. 2
MatMulAT bMatMul MatMulAT bMatMul
S m <
3 LR
Q -
()]
Inp. 2 Inp. 1 Inp. 2
Linear Algebra Linear Algebra

Highlights (speedups — higher is better for us):

- GPU:
- OpenACC: 1.1x - 72.7x
- PPCG(+ATF): failed -

- TVM: 1.0x 4172.5x
- NVIDIA cuBLAS: 0.9x - 2.7x

- CPU:

- OpenMP: 1.7x

- Pluto(+ATF): 1.4x — 14.3x
- Numba: 11.6x —13297.9x

- TVM: 1.0x - 6.1x
- Intel oneMKL: 0.4x

Experimental Results

Stencil Computations:

GPU: \ [l OpenACC \ [l PPCG \ [PPCG+ATF \ \ \ []Hand Optimized (cuBLAS, cuDNN) \
OURSs CdTvm —
CPU: | Il OpenMP | [l Piuto | [l Pluto+ATF |] Numba | | [] Hand Optimized (oneMKL, oneDNN, EKR) |
NVIDIA Ampere GPU Intel Skylake CPU
Gaussian_2D Jacobi_3D Gaussian_2D Jacobi_3D
36 36 =] n
I -
M M S -
o H o~ 2 - 2
g PR S o3 “ICERE I H ez
N o~ = = (o]
Q © © .
' : : . H:|>
(/2] © ©
1 1
=] =]
c c
Inp. 1 Inp. 2 Inp. 1 Inp. 2 Inp. 2 Inp. 1 Inp. 2
Stencil Computations Stencil Computations

Highlights (speedups — higher is better for us):

- GPU:
- OpenACC: 1.8x — 3.4x
- PPCG(+ATF): 1.0x
- TVM: 1.0x - 2.3x
- NVIDIA cuDNN: N/A - 5.3x

- CPU:

Qpen—|\/||:’:1.1x

Pluto(+ATF): 1.1x - 3.7x

Numba: 8.6x {42.1x |

TVM: 1.0x

- Intel oneDNN: 2.6x

14

Experimental Results

Data Mining & Quantum Chemistry:

GPU: | IMopenAcc | [IPPCG | [EPPCG+ATF | | | [1Hand Optimized (cuBLAS, cuDNN) |
OURs CTtvm —
CPU: | EopenmP | [lPiutoc | [EPluto+ATF | [JNumba | | []Hand Optimized (oneMKL, oneDNN, EKR) |
NVIDIA Ampere GPU Intel Skylake CPU
PRL ccsD(T) PRL CCSD(T)
36 < o = 36 N e ~
- o3 i S| [+ S S
= — - b < 10 ‘R
(=) =] N
- <

Speedup

9 9
))
o o
© ©
> >
© ©
0)
c c

Inp. 1
Data Mining Quantum Chemistry

not available

Inp. 2

not available

failed

failed
S failed

fail

Highlights (speedups — higher is better for us):

- GPU:

- OpenACC: 1.5x {178.9x

- PPCG(+ATF): 1.5x —-{10181.1x|
- TVM: failed - 1.4x

- Hand Optimized: N/A

- CPU:
- OpenMP: 1.1x - 7.2x

Inp. 1

not available
1.0
1.2

ot available

=

Inp. 2
Quantum Chemistry

- Pluto(+ATF): 1.1x - 3.7x

- Numba: 8.6x -{>6000x
- TVM: 1.0x {2.5x

- Intel oneDNN/EKR: N/A

15

Deep Learning:

GPU:
CPU:

Experimental Results

| IMopenAcc | [IPPCG

B PPCG+ATF

[] Hand Optimized (cuBLAS, cuDNN)

| EopenvP | [Pluto

[Pluto+ATF

| |
[Numba | HTvm |

[] Hand Optimized (oneMKL, oneDNN, EKR) \

NVIDIA Ampere GPU

Intel Skylake CPU

MCC

Speedup

Inp. 1

Deep Learning

MCC_Caps

not available

not available

Inp. 2
Deep Learning

1.1

ot available

=

Inp. 2

Highlights (speedups — higher is better for us):

- GPU:

- OpenACC: 12.8x - 64.0x
- PPCG(+ATF): failed

- TVM: 1.0x - 1.6x
- NVIDIA cuDNN: N/A - 2.4x

- CPU:

- OpenMP: 46.8x

- Pluto(+ATF): 14.3x — 364.4x
- Numba: 515.8x
- TVM: 1.0x
- Intel oneDNN: N/A

16

Experimental Results

Why MDH outperforms related approaches:

MDH vs OpenACC/OpenMP (*):

philosophy

® Limited tiling efficiency: manual tiling can
improve performance, but is complex, error-
prone, and contrary to the directive-based

MDH vs Numba (*):

® Limited reduction support (e.g., for PRL) ® Missing semantic information about reductions

® Rigid, heuristic-driven optimizations ® Seems to not apply important optimizations

in its generated code, e.g., tiling

MDH vs Vendor Libraries (*):

® Optimized toward average high performance

MDH vs Polyhedral Compilers:

® Missing semantic information
about reductions

® Polyhedral transformation often chosen
toward too rigid optimization goals,

e.g., always outer parallelization underlying optimization decisions

over data characteristics

® MDH auto-tunes for particular sizes

(*) Performance results are difficult to interpret with certainty,
as the generated assembly (PTX/LLVM) obscures the

Higher performance through

efficient reduction handling and MDH-driven optimizations

17

Conclusion

We present a reduction-aware directive for optimizing data-parallel computations:

¢ provided in the easy-to-use Python programming language
¢ supports user-defined reduction operators
e formally grounded in the MDH formalism

e experimental real-world studies show encouraging performance results: e.g.,
speedups of up to 6.5x over hand-optimized libraries from NVIDIA and Intel

R R I — R R R — e ———— R

Our approach is reduction-aware, not reduction-focused —
designed to achieve high performance also for reduction-free computations

R R e R e R I A — —— A

Future Work:

Collaborate with the OpenMP/OpenACC community to incorporate reduction-
awareness into these approaches.

Please feel free to reach out

If you are interested in collaborating!
18

— = Universitat

Munster

Questions?

https://atf-tuner.org

Code
Generation

Code
Optimization

https://richardschulze.net
r.schulze@uni-muenster.de

Richard
Schulze

https://arirasch.net
a.rasch@uni-muenster.de

19

mailto:r.schulze@uni-muenster.de
mailto:a.rasch@uni-muenster.de

Distinctive Design Aspect

The scalar operation is clearly separated from reduction computations in our approach:

def matvec(T:BasicType, I:int,K:int):

@mdh(out(w = Buffer[T]),
inp(M = Buffer[T], v = Bufferl[T]) ,
combine_ops(cc, pw(add)))

def mdh_matvec__T_I_K(w, M,v):
for 1 in range(I):
for k ipn range(K):
wlil] MLi,k] > v[k]

return mdh_matvec_ _T_I_K

We use “=" instead of “+=":

e loop body computes single point in the iteration space
® reductions are expressed through our directive

e aggregation across the iteration space is not encoded in the loop body

20

O 00 1 N U b W N =

NS N e N e T e e e e
_= O 0 00N NV R WD RO

O 00 NN QN U W N

O o S e S S S S O O = W S}
O 00 I N U1 A W N RO

Pre-Implemented Operators

def cc(T:ScalarType, D:int, d:int): (:(:
@combine_operator(

index_set_function = lambda I: I,
scalar_type =T,
dimensionality = D,
operating_dimension = d

)
def cc__T_D_d(I, P,Q):

def cc__T_D_d__I_PQ(res, lhs,rhs):

for i[1,...,d-1] in I[1,...,d-11]:
for i[d+1,...,D] in I[d+1,...,D]:

for i[d] in P:

res[i[1,...,d,...,D] 1 =
lhs[i[1,...,d,...,D]
for i[d] in Q:
res[i[1,...,d,...,D] 1 =
rhs(i[1,...,d,...,D]

return cc__T_D_d__I_PQ
return cc__T_D_d

]

]

def pw(cf:PW_CustomFunc): PW
def pw__cf(T:ScalarType, D:int, d:int):

@combine_operator(
index_set_function lambda I: {0},
scalar_type =T,
dimensionality D,
operating_dimension d

)
def pw__cf__T_D_d(I, P,Q):

def pw__cf__T_D_d__I_PQ(res, lhs,rhs):

for i[1,...,d-1]1 in I[1,...,d-117:
for i[d+1,...,D] in I[d+1,...,D]:
cf(
res[i[1,...,d-1]1,0,i[d+1,...,D] 1,
lhs[i[1,...,d-11,0,i[d+1,...,D] 1,
rhs[i[1,...,d=-11,0,i[d+1,...,D] 1)

return pw__cf__T_D_d__I_PQ

return pw__cf__T_D_d
return pw__cf

O 00 N QN U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

def ps(cf:PS_CustomFunc): E
def ps__cf(T:ScalarType, D:int, d:int):

@combine_operator(
index_set_function lambda I: I,
scalar_type =T,
dimensionality D,
operating_dimension d

)
def ps__cf__T_D_d(I, P,Q):

def ps__cf__T_D_d__I_PQ(res, lhs,rhs):
for i[1,...,d-1] in I[1,...,d-1]:
for i[d+1,...,D] in I[d+1,...,D]:

for i[d] in P:

g_sm_i_d = set(q for g in Q if g < i[d])

if g_sm_i_d:

cf(
res[i[1,...,d-1] ,
i[d])
ild+1,...,D] 1,
lhs[i[1,...,d-1] ,
i[d])
ild+1,...,D] 1,
rhs[i[1,...,d-1] ,
max(q_sm_i_d),
ifd+1,...,D] 1)
else:
res[i[1,...,d-1] ,
i[d])
ifd+1,...,D] 1 =
lhs[i[1,...,d=-1] ,
i[d])
ifd+1,...,D] 1
for i[d] in Q:
... (analogous to above)

return ps__cf__T_D_d__I_PQ
return ps__cf__T_D_d
return ps__cf

21

