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Message of this Talk

Awareness of reductions in directive-based programming can 
significantly enhance performance

Reductions are ubiquitous:

def matmul(A, B, I, J, K):
    C = [[0.0 for _ in range(J)] for _ in range(I)]
    for i in range(I):
        for j in range(J):
            for k in range(K):
                C[i][j] += A[i][k] * B[k][j]
    return C

Linear Algebra

def mcc(img, flt, N, P, Q, K, R, S, C):
    res = [[[[0.0 for _ in range(K)] for _ in range(Q)]
             for _ in range(P)] for _ in range(N)]
    for n in range(N):
        for p in range(P):
            for q in range(Q):
                for k in range(K):
                    for r in range(R):
                        for s in range(S):
                            for c in range(C):
                                res[n][p][q][k] += (
                                    img[n][(2*p)+r][(2*q)+s][c] *
                                    flt[k][r][s][c]
                                )
    return res

Deep Learning

def mbbs(I, J):
    O = [0.0 for _ in range(I)]
    prefix = 0.0

    for i in range(I):
       row_sum = 0.0
        for j in range(J):
            row_sum += I[i][j]

       prefix += row_sum
        O[i] = prefix

    return O

Algorithmic

…  (Quantum Chemistry, Data Mining, etc)

often use more complex  
reduction operators than +=
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State-of-the-Art Directive-Based Approaches
Analysis of the state of the art focussing on their reduction handling:

All approaches: 
Further performance potential  

(also for reduction-free computations)
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Furthermore, our approach is based on Python (unlike many ex-
isting frameworks that often rely on C++), thereby contributing
to high user productivity. Our experimental evaluation across a
range of application domains—including linear algebra, stencil com-
putations, data mining, quantum chemistry, and deep learning—
demonstrates that our generated code achieves competitive—and
in some cases superior—performance compared to hand-optimized
implementations provided by highly tuned vendor libraries from
NVIDIA and Intel.

The remainder of this paper is organized as follows. Section 2 an-
alyzes strengths and weaknesses of directive-based approaches for
reductions. Section 3 summarizes the MDH formalism, and Section 4
introduces our MDH-based directive approach. Section 5 presents
experimental results, Section 6 reviews related work, Section ??
concludes, and Section 8 outlines future directions.

2 State-of-the-Art Directive-Based Approaches
We review state-of-the-art directive-based approaches—PPCG/Pluto,
OpenMP/OpenACC, and Numba—focusing on their handling of
reduction computations, illustrated using the example of Matrix-
Vector Multiplication (MatVec).

PPCG/Pluto. Listing 1 illustrates how MatVec is optimized by
polyhedral compilers—PPCG for GPUs and Pluto for CPUs—using
the same annotated sequential C input.

We consider PPCG and Pluto highly productive, as they require
only simple annotations of the target region (lines 6 and 13). How-
ever, this productivity often comes at a performance cost, particu-
larly in reduction-heavy computations: reduction operators (such
as + in the k-loop of MatVec in line 9) are not explicitly represented
in the directive and thus remain unavailable for optimization. 3

1 #define I /* define I */

2 #define K /* define K */

3 #define T float
4
5 void matvec_poly(const T *M, const T *v, T *w) {

6 #pragma scop

7 for (int i = 0; i < I; i++) {

8 w[i] = 0.0f;

9 for (int k = 0; k < K; k++) {

10 w[i] += M[i * K + k] * v[k];

11 }

12 }

13 #pragma endscop

14 }

Listing 1: PPCG/Pluto program for MatVec (C)

OpenMP. Listing 2 illustrates how MatVec is optimized for CPUs
using OpenMP. The user annotates the sequential C++ implemen-
tation with two simple directives (lines 7 and 11), allowing the
OpenMP compiler to automatically generate parallel code for MatVec.
The directive in line 11 explicitly informs the compiler that the in-
termediate results of the k-loop should be combined using addition
(+) as the reduction operator, enabling safe parallelization and opti-
mization of the reduction across loop iterations.
3While reductions in simple cases (e.g., MatVec) may be inferred automatically, more
complex scenarios (such as PRL in Listing 11) complicate static detection due to
undecidability (Rice’s theorem).

Compared to the input program used by polyhedral compilers
(Listing 1), the OpenMP implementation requires a small modi!ca-
tion to support e"cient parallelization: a local variable sum must
be introduced (lines 9, 11, 13, and 15) to hold intermediate results.

1 #define I /* define I */

2 #define K /* define K */

3 #define T float
4
5 void matvec_openmp(const T* M, const T* v, T* w)

6 {

7 #pragma omp parallel for
8 for (int i = 0; i < I; ++i) {

9 T sum = 0.0f;

10
11 #pragma omp simd reduction (+:sum)

12 for (int k = 0; k < K; ++k) {

13 sum += M[i * K + k] * v[k];

14 }

15 w[i] = sum;

16 } }

Listing 2: OpenMP program for MatVec (C++)

OpenACC. Listing 3 illustrates how MatVec is optimized for
GPUs using OpenACC. The OpenACC implementation closely re-
sembles the OpenMP version for CPUs (Listing 2), with the primary
di#erence found in lines 7–8 of Listing 3: the OpenACC code in-
cludes explicit data transfers (via copyin and copyout) to manage
data transfers between host and GPU memory.

1 #define I /* define I */

2 #define K /* define K */

3 #define T float
4
5 void matvec_openacc(const T* M, const T* v, T* w)

6 {

7 #pragma acc data copyin(M[0:I*K], v[0:K]) \

8 copyout(w[0:I]) {

9 #pragma acc parallel loop

10 for (int i = 0; i < I; ++i) {

11 T sum = 0.0f;

12
13 #pragma acc loop reduction (+:sum)

14 for (int k = 0; k < K; ++k) {

15 sum += M[i * K + k] * v[k];

16 }

17 w[i] = sum;

18 } } }

Listing 3: OpenACC program for MatVec (C++)

Numba. Listing 4 presents a CPU-optimized version of MatVec
using Numba. Although Numba also supports GPU o$oading (see
Listing 5), this requires a distinct, GPU-speci!c implementation
using constructs such as cuda.grid (as in line 4 of Listing 5).

Numba uses Python as its host language, which—unlike the
C/C++-based approaches in Listings 1–3—enhances productivity
by leveraging Python’s simplicity and broad adoption [1].

From Listing 4, we observe that similarly to polyhedral com-
pilers PPCG and Pluto (Listing 1), Numba requires only minimal
code annotations (line 2 in Listing 4). Consequently, Numba o#ers
productivity comparable to, or even exceeding, that of PPCG/Pluto
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Furthermore, our approach is based on Python (unlike many ex-
isting frameworks that often rely on C++), thereby contributing
to high user productivity. Our experimental evaluation across a
range of application domains—including linear algebra, stencil com-
putations, data mining, quantum chemistry, and deep learning—
demonstrates that our generated code achieves competitive—and
in some cases superior—performance compared to hand-optimized
implementations provided by highly tuned vendor libraries from
NVIDIA and Intel.

The remainder of this paper is organized as follows. Section 2 an-
alyzes strengths and weaknesses of directive-based approaches for
reductions. Section 3 summarizes the MDH formalism, and Section 4
introduces our MDH-based directive approach. Section 5 presents
experimental results, Section 6 reviews related work, Section ??
concludes, and Section 8 outlines future directions.

2 State-of-the-Art Directive-Based Approaches
We review state-of-the-art directive-based approaches—PPCG/Pluto,
OpenMP/OpenACC, and Numba—focusing on their handling of
reduction computations, illustrated using the example of Matrix-
Vector Multiplication (MatVec).

PPCG/Pluto. Listing 1 illustrates how MatVec is optimized by
polyhedral compilers—PPCG for GPUs and Pluto for CPUs—using
the same annotated sequential C input.

We consider PPCG and Pluto highly productive, as they require
only simple annotations of the target region (lines 6 and 13). How-
ever, this productivity often comes at a performance cost, particu-
larly in reduction-heavy computations: reduction operators (such
as + in the k-loop of MatVec in line 9) are not explicitly represented
in the directive and thus remain unavailable for optimization. 3

1 #define I /* define I */

2 #define K /* define K */

3 #define T float
4
5 void matvec_poly(const T *M, const T *v, T *w) {

6 #pragma scop

7 for (int i = 0; i < I; i++) {

8 w[i] = 0.0f;

9 for (int k = 0; k < K; k++) {

10 w[i] += M[i * K + k] * v[k];

11 }

12 }

13 #pragma endscop

14 }

Listing 1: PPCG/Pluto program for MatVec (C)

OpenMP. Listing 2 illustrates how MatVec is optimized for CPUs
using OpenMP. The user annotates the sequential C++ implemen-
tation with two simple directives (lines 7 and 11), allowing the
OpenMP compiler to automatically generate parallel code for MatVec.
The directive in line 11 explicitly informs the compiler that the in-
termediate results of the k-loop should be combined using addition
(+) as the reduction operator, enabling safe parallelization and opti-
mization of the reduction across loop iterations.
3While reductions in simple cases (e.g., MatVec) may be inferred automatically, more
complex scenarios (such as PRL in Listing 11) complicate static detection due to
undecidability (Rice’s theorem).

Compared to the input program used by polyhedral compilers
(Listing 1), the OpenMP implementation requires a small modi!ca-
tion to support e"cient parallelization: a local variable sum must
be introduced (lines 9, 11, 13, and 15) to hold intermediate results.

1 #define I /* define I */

2 #define K /* define K */

3 #define T float
4
5 void matvec_openmp(const T* M, const T* v, T* w)

6 {

7 #pragma omp parallel for
8 for (int i = 0; i < I; ++i) {

9 T sum = 0.0f;

10
11 #pragma omp simd reduction (+:sum)

12 for (int k = 0; k < K; ++k) {

13 sum += M[i * K + k] * v[k];

14 }

15 w[i] = sum;

16 } }

Listing 2: OpenMP program for MatVec (C++)

OpenACC. Listing 3 illustrates how MatVec is optimized for
GPUs using OpenACC. The OpenACC implementation closely re-
sembles the OpenMP version for CPUs (Listing 2), with the primary
di#erence found in lines 7–8 of Listing 3: the OpenACC code in-
cludes explicit data transfers (via copyin and copyout) to manage
data transfers between host and GPU memory.

1 #define I /* define I */

2 #define K /* define K */

3 #define T float
4
5 void matvec_openacc(const T* M, const T* v, T* w)

6 {

7 #pragma acc data copyin(M[0:I*K], v[0:K]) \

8 copyout(w[0:I]) {

9 #pragma acc parallel loop

10 for (int i = 0; i < I; ++i) {

11 T sum = 0.0f;

12
13 #pragma acc loop reduction (+:sum)

14 for (int k = 0; k < K; ++k) {

15 sum += M[i * K + k] * v[k];

16 }

17 w[i] = sum;

18 } } }

Listing 3: OpenACC program for MatVec (C++)

Numba. Listing 4 presents a CPU-optimized version of MatVec
using Numba. Although Numba also supports GPU o$oading (see
Listing 5), this requires a distinct, GPU-speci!c implementation
using constructs such as cuda.grid (as in line 4 of Listing 5).

Numba uses Python as its host language, which—unlike the
C/C++-based approaches in Listings 1–3—enhances productivity
by leveraging Python’s simplicity and broad adoption [1].

From Listing 4, we observe that similarly to polyhedral com-
pilers PPCG and Pluto (Listing 1), Numba requires only minimal
code annotations (line 2 in Listing 4). Consequently, Numba o#ers
productivity comparable to, or even exceeding, that of PPCG/Pluto
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by using Python as its host language. However, it faces similar lim-
itations as PPCG/Pluto when it comes to reduction-based compu-
tations: for example, parallelizing the reduction dimension (line 6)
would require explicitly managing parallelism and synchroniza-
tion, which diminishes the simplicity and ease of use that Numba
typically provides.4

1 def matvec_numba_cpu(I, K):

2 @njit(parallel=True)

3 def matvec__I_K(w, M, v):

4 for i in range(I):
5 w[i] = 0.0

6 for k in range(K):
7 w[i] += M[i, k] * v[k]

8 return matvec__I_K

Listing 4: Numba program for MatVec on CPU (Python)

1 def matvec_numba_gpu(I, K):

2 @cuda.jit

3 def matvec__I_K(w, M, v):

4 i = cuda.grid (1)

5 if i < I:

6 for k in range(K):
7 w[i] += M[i, k] * v[k]

8 return matvec__I_K

Listing 5: Numba program for MatVec on GPU (Python)

3 The MDH Approach
We recapitulate the MDH approach which o!ers a formalism [32]
for expressing data-parallel computations—called High-Level Pro-
gram Representation in MDH—based on the algebraic properties
of these computations5. We brie"y summarize the high-level pro-
gram representation of MDH, using the example of Matrix-Vector
Multiplication (MatVec).

1 def matvec( T:BasicType , I:int ,K:int ):

2 @mdh()

3 def matvec__T_I_K ():

4 return (

5 out_view[T]( w = [lambda i,k: (i)] ),

6 md_hom[I,K]( f_mul , (cc,pw(add)) ),

7 inp_view[T,T]( M = [lambda i,k: (i,k)] ,

8 v = [lambda i,k: (k) ] )

9 )

10 return matvec__T_I_K

Listing 6: MatVec expressed in MDH DSL (Python)

Listing 6 illustrates how MatVec is expressed in MDH’s DSL,
which is embedded in Python and implements the formal, high-
level program representation of MDH. The computation takes as
input a matrix M (line 7) and a vector v (line 8), both of type T (e.g.,
fp32), with sizes I ⌐ K (matrix) and K (vector), for I,K ∈ N (line 6).

4Numba can automatically parallelize simple reductions in certain cases, but often
skips them as soon as they become slightly more complex [26].
5The MDH formalism [32] also introduces a Low-Level Program Representation for
expressing optimizations and a fully automatic Lowering Process that translates high-
level MDH instances into device- and data-optimized low-level ones. These are not
discussed here, as they are not relevant to the directive design focus of this paper.

Input accesses are captured via the higher-order function inp_view

(lines 7–8), which maps iteration-space indices to bu!er indices:
(i,k)↦(i,k) for the matrix and (i,k)↦(k) for the vector.

The data-parallel computation is expressed via md_hom (line 6),
which applies f_mul (multiplication) to each (M[i,k],v[k]), con-
catenates results along the 𝐿-dimension using cc, and reduces over
the 𝑀-dimension with pw(add).

Output accesses are captured by function out_view (line 5).
While straightforward here, it can express variants such as strided
outputs (via the index function (𝐿,𝑀)↦ (𝐿 ∗ 𝑁) for stride 𝑁 ∈ N) or
transposed layouts in other computations, etc.

A notable feature of MDH is its "exible handling of reduction
operators. It supports user-de#ned reduction operators, such as
point-wise operator pw()︃⋊) for arbitrary functions )︃⋊ ∶ T ⌐ T ↢ T,
and fully custom operators [32] like pre!x sum, which—unlike
point-wise operations—preserve the size of the reduction dimension
instead of collapsing it to a single element.

@mdh( ... )

def IDF ():

return (

out_view[ BSC_TYP ,..., BSC_TYP

)︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃]︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃⌊︃
#OB-times

](

IDF = [ IDX_FNC , ..., IDX_FNC

)︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃]︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃⌊︃
#ACC

OB

1 -times

]

...
IDF = [ IDX_FNC , ..., IDX_FNC

)︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃]︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃⌊︃
#ACC

OB

#OB
-times

] ) ,

⌋︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌉︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃{︃

#OB-times

md_hom[ SIZE ,..., SIZE

)︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃]︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃⌊︃
D-times

]( SF , ( CO ,..., CO

)︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃]︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃⌊︃
D-times

) ),

inp_view[ BSC_TYP ,..., BSC_TYP

)︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃]︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃⌊︃
#IB-times

](

IDF = [ IDX_FNC , ..., IDX_FNC

)︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃]︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃⌊︃
#ACC

IB

1 -times

]

...
IDF = [ IDX_FNC , ..., IDX_FNC

)︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃]︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃[︃⌊︃
#ACC

IB

#IB
-times

] )

⌋︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌉︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃⌈︃{︃

#IB-times

)

Listing 7: General structure of the MDH DSL (Python). Flexi-
ble parts are highlighted in gray.

Listing 7 illustrates the generic structure of the MDH DSL. In
the listing, #IB and #OB generically represent the number of input
and output bu!ers, respectively. The terms #ACC

IB

b
and #ACC

OB

b

denote the number of accesses to the b-th input or output bu!er. For
instance, three accesses are counted when specifying v = [lambda

i,k: (k+0), lambda i,k: (k+1), lambda i,k: (k+2)], as
typically used in a 3-point stencil computation (discussed later),
where all three index expressions target the same bu!er v.

In the following, we introduce our MDH-based directive and
show how it can be translated into an MDH DSL program (Listing 7).

3

Numba:
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Introduce reduction-aware directive addressing limitations of state of the art:

Contribution of this Work

Directive name: @mdh explained and motivated later)

Declaration of output data: 
name & basic type

Declaration of input data: 
name & basic type

SC Workshops ’25, November 16–21, 2025, St Louis, MO, USA Schulze, Gorlatch, Rasch

This translation enables us to leverage the existing DSL-based MDH
pipeline [32, 33, 35, 36] for parallel code generation, which auto-
matically produces auto-tuned parallel code (e.g., for GPUs and
CPUs) with optimizations such as tiling, data movement, and paral-
lelization.

4 The MDH Directive
We !rst introduce our MDH-based directive for data-parallel com-
putations through practical examples in Section 4.1. Afterwards, we
discuss its general structure in Section 4.2, and !nally, we demon-
strate how to generate an MDH DSL program from it in Section 4.3.

4.1 Introductory Examples
To promote user productivity, our approach adopts Python as the
host language. We implement our directive as a Python decorator
(the same as Numba—line 2 in Listing 4) which is a native Python
language construct for code annotations.

Linear Algebra. Listings 8 and 9 show how Matrix-Vector Multi-
plication (MatVec) and Matrix Multiplication (MatMul) are optimized
using our MDH directive (lines 2–4 in Listing 8, and lines 2–4 in
Listing 9).

1 def matvec( T:BasicType , I:int ,K:int ):

2 @mdh( out( w = Buffer[T] ) ,

3 inp( M = Buffer[T], v = Buffer[T] ) ,

4 combine_ops( cc, pw(add) ) )

5 def mdh_matvec__T_I_K( w, M,v ):

6 for i in range(I):
7 for k in range(K):
8 w[i] = M[i,k] * v[k]

9 return mdh_matvec__T_I_K

Listing 8: MatVec optimized via MDH Directive (Python)

Listing 8 illustrates how our MDH directive speci!es the input
and output bu"ers along with their corresponding basic type T

(lines 2–3), e.g., T=fp32. In particular, our directive captures the
reduction operators (line 4), which are for MatVec concatenation cc

and point-wise addition pw(add).6

A key design di"erence of our approach, compared to the existing
methods in Section 2, lies in how the loop body is structured (line 8).
In our approach, the loop body computes a single point in the
iteration space without performing reductions—i.e., the aggregation
across the iteration space is not encoded directly in the loop body
(using = in line 8 of Listing 8, rather than += as in line 13 of Listing 2,
for example). Instead, reductions are semantically captured and
expressed through our directive. As a result, reduction operations
(such as +=) are abstracted away from the loop body.

Although this separation may appear unconventional and re-
quire some adaptation, it o"ers a major advantage: nested reduc-
tions can be expressed naturally and concisely in our approach
(as elaborated later in this section), whereas related approaches
generally lack native support and require complex workarounds
(also discussed later).

6Operators cc and pw are pre-implemented by our system due to their frequent use
(implementations provided in the Appendix, Section A, for the interested reader).

Compared to OpenMP and OpenACC (Listings 2 and 3), our
approach does not require additional temporary variables for inter-
mediate results (such as sum in Listings 2 and 3) or zero-initializing
result bu"ers (as Numba, see line 5 in Listing 4).

1 def matmul( T:BasicType , I:int ,J:int ,K:int ):

2 @mdh( out( C = Buffer[T] ) ,

3 inp( A = Buffer[T], B = Buffer[T] ) ,

4 combine_ops( cc, cc, pw(add) ) )

5 def matmul__T_I_J_K( C, A,B ):

6 for i in range(I):
7 for j in range(J):
8 for k in range(K):
9 C[i,j] = A[i,k] * B[k,j]

10 return matmul__T_I_J_K

Listing 9: MatMul optimized via MDH Directive (Python)

Listing 9 shows our dirdective for MatMul (lines 2–4), which
closely resembles the directive for MatVec in Listing 8 and thus
re#ects the natural similarity between the two operations. Apart
from di"erent bu"er names (lines 2–5), the MatMul directive intro-
duces an additional cc dimension (line 4) to account for the extra
j-dimension in its iteration space.

Stencil Computations. Listing 10 shows our directive applied to
computation Jacobi (Jacobi1D). This example is relatively straight-
forward, as Jacobi1D operates over a regular one-dimensional iter-
ation space that does not involve any reduction computations.

1 def jacobi1d( T:BasicType , I:int ):

2 @mdh( out( y = Buffer[T] ) ,

3 inp( x = Buffer[T] ) ,

4 combine_ops( cc ) )

5 def jacobi1d__T_I( y, x ):

6 for i in range(I):
7 y[i] = ( x[i+0] + x[i+1] + x[i+2] ) / 3.0

8 return jacobi1d__T_I

Listing 10: Jacobi1D optimized via MDH Directive (Python)

Data Mining. Listing 11 shows our directive for Probabilistic
Record Linkage (PRL)—a popular example used in data mining to
!nd duplicate entries in a database [34]. A key characteristic of PRL
is its use of the point-wise reduction operator pw (line 26): instead
of relying on a simple addition operator—as commonly used in
linear algebra routines (e.g., in line 4 of Listing 4)—it employs a
PRL-speci!c customization function (lines 6–19 in Listing 11).

Deep Learning. Listing 12 shows our directive for Multi-Channel
Convolution (MCC)—a generalization of standard convolution com-
monly used in deep learning. In contrast to previous examples,
MCC uses unconventional bu"er sizes: according to MCC’s usage
in ResNet-50, the img bu"er (lines 13–14) is arti!cially enlarged in
the second and third dimension (lines 4–5)7.

7If not explicitly speci!ed (Listings 8–11), bu"er sizes are automatically inferred from
the iteration space and index functions.

4

Expressing reductions: 
cc (concatenation) & 

pw(add) (pointwise via addition)

Our MDH directive is designed to efficiently express reductions

Key Strength: 
- Explicit representation of reduction operators 

- Supports arbitrary, user-defined reductions (cc & pw are pre-implemented) 

- Python-based interface
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Excursion: User-Defined Operators
Explicit implementation of reduction operator concatenation (cc):
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1 SIZE_FUNC (⌐) ::= !lambda I: I! | !lambda I: {0}!;

2
3 BSC_TYP ::= (* as in Listing 11 *);

4 POS_INT ::= !1! | !2! | ...

5 IDF ::= (* as in Listing 11 *);

6
7 LTR ::= (* Listing 12 *) | !...!;

8
9 CTR(⌐) ::= (* Listing 12 *) | CO_FOR

10 CO_FOR ::= !for!, IDF ,![!,<EXP >,!] in!,

11 EXP ,!:\n!,STMs;

12
13 STMs ::= (* as in Listing 12 *)

Listing 16. Extension of Listing 12 for reduction oper-
ators (EBNF). Gray highlights correspond to Listing 15.
Angle brackets denote a comma-separated list.

of size (I[1],. . . ,I[d-1],Q,I[d+1],. . . ,I[D]); the result
res must have the following size [39]: (I[1],. . . ,I[d-1],
index_set_function(P⌐Q), I[d+1],. . . ,I[D])11.

1 def cc( T:ScalarType , D:int , d:int ):
2 @combine_operator(
3 index_set_function = lambda I: I,
4 scalar_type = T,
5 dimensionality = D,
6 operating_dimension = d
7 )
8 def cc__T_D_d( I, P,Q ):
9 def cc__T_D_d__I_PQ( res , lhs ,rhs ):
10
11 for i[1,...,d-1] in I[1,...,d-1]:
12 for i[d+1,...,D] in I[d+1,...,D]:
13
14 for i[d] in P:
15 res[ i[1,...,d,...,D] ] =
16 lhs[ i[1,...,d,...,D] ]
17 for i[d] in Q:
18 res[ i[1,...,d,...,D] ] =
19 rhs[ i[1,...,d,...,D] ]
20 return cc__T_D_d__I_PQ
21 return cc__T_D_d

Listing 17. Reduction operator cc (concatenation)
in MDH-DSL

In Listing 17, we !rst iterate over all dimensions except d
(lines 11–12). Afterwards, we iterate over dimension d (lines 14
and 17), and we write lhs consecutively to the !rst part of
res (lines 15–16) and rhs to the second part of res (lines 18–
19), thereby producing the concatenation of lhs and rhs
in res.
11The I[1], I[2], . . . , as well as P and Q, denote index sets [39]. For
simplicity, the reader may think of them as integer values representing sizes
(with P⌐Q corresponding to P+Q).

1 def pw( cf:PW_CustomFunc ):
2 def pw__cf( T:ScalarType , D:int , d:int ):
3 @combine_operator(
4 index_set_function = lambda I: {0},
5 scalar_type = T,
6 dimensionality = D,
7 operating_dimension = d
8 )
9 def pw__cf__T_D_d( I, P,Q ):
10 def pw__cf__T_D_d__I_PQ( res , lhs ,rhs ):
11 for i[1,...,d-1] in I[1,...,d-1]:
12 for i[d+1,...,D] in I[d+1,...,D]:
13 cf(
14 res[ i[1,...,d-1],0,i[d+1,...,D] ],
15 lhs[ i[1,...,d-1],0,i[d+1,...,D] ],
16 rhs[ i[1,...,d-1],0,i[d+1,...,D] ])
17 return pw__cf__T_D_d__I_PQ
18 return pw__cf__T_D_d
19 return pw__cf

Listing 18. Reduction operator pw (pointwise) in
MDH-DSL for arbitrary customization function cf

Listing 18 shows our implementation of reduction opera-
tor pw (pointwise combination), which is structurally similar
to concatenation in Listing 17. The key di"erences are: 1) the
index set function always maps to {0} (line 4 in Listing 18),
since pw collapses the reduction dimension to a single ele-
ment (accessed via index 0); 2) instead of writing values from
lhs and rhs consecutively to memory (Listing 17, lines 14–
19), the elements are reduced using a custom function cf
(Listing 18, lines 13–16), e.g., cf=prl_max (Listing 6).

Listing 19 shows our implementation of reduction op-
erator ps (pre!x-sum) which combines characteristics of
reduction operators cc and pw: the same as cc, operators ps
retains the size of the iteration space dimension (line 4), but
it uses a binary function for computing its results (line 16),
analogously to pw.

5 Related Work
Popular approaches introduce DSL-based high-level abstrac-
tions that simplify programming for modern parallel archi-
tectures. Prominent examples include those discussed in Sec-
tion 2, as well as AKG [9], TC [45], and TACO [26], together
with numerous other DSLs [8, 10, 14, 20, 24, 25, 47]. Building
upon these e"orts, our DSL further advances the state of the
art by providing a principled and expressive treatment of
reduction operators. For instance, both TACO and TC rely
on Einsum-based DSLs and thus face issues similar to those
described for Halide in Section 2. In contrast, domain-speci!c
libraries such as NVIDIA cuBLAS and Intel oneMKL achieve
high performance but are inherently limited to speci!c ar-
chitectures and narrow domains like linear algebra [16] and
stencil computations [27].
Another line of work employs directive-based program-

ming, as in OpenMP [34], OpenACC [33], and Numba [29],
9

Meta Parameters

Input Sizes (generic)

Output & Inputs

Iterating over lhs & rhs

Writing lhs consecutively to res

Writing rhs consecutively to res

Name

Our interface for custom operators is expressive (but may require some familiarization)

In a nutshell
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How to generate high-performance executable code (e.g., in CUDA) from our 
reduction-aware, directive-annotated Python programs:

Code Generation

Exploit MDH Approach for driving Code Generation and Optimization

https://mdh-lang.org

ACM TOPLAS 2024 

Overview
The approach of Multi-Dimensional Homomorphisms (MDH) is an algebraic formalism for systematically reasoning about de-
composition and re-composition strategies of data-parallel computations (such as linear algebra routines and stencil
computations) for the memory and core hierarchies of state-of-the-art parallel architectures (GPUs, multi-core CPU, multi-
device and multi-node systems, etc).

The MDH approach (formally) introduces:

1. High-Level Program Representation (Contribution 1) that enables the user conveniently implementing data-parallel
computations, agnostic from hardware and optimization details;

2. Low-Level Program Representation (Contribution 2) that expresses device- and data-optimized de- and re-composition
strategies of computations;

3. Lowering Process (Contribution 3) that fully automatically lowers a data-parallel computation expressed in its high-level
program representation to an optimized instance in its low-level representation, based on concepts from automatic
performance optimization (a.k.a. auto-tuning), using the Auto-Tuning Framework (ATF).

The MDH’s low-level representation is designed such that Code Generation from it (e.g., in OpenMP for CPUs, CUDA for
NVIDIA GPUs, or OpenCL for multiple kinds of architectures) becomes straightforward.

Our Experiments report encouraging results on GPUs and CPUs for MDH as compared to state-of-practice approaches,
including NVIDIA cuBLAS/cuDNN and Intel oneMKL/oneDNN which are hand-optimized libraries provided by vendors.

Ultimate MDH Goals

Performance: achieve performance competitive to hand-optimized solutions

Portability: target any kind of parallel architecture

Productivity: free user from hardware and optimization details

Getting Started
(Our implementation of MDH will be open sourced soon on GitHub)

Code Examples
From the following code examples, our MDH compiler generates fully automatically device- and data-optimized, executable
program code, e.g., in OpenMP for CPUs, CUDA for NVIDIA GPUs, or OpenCL for multiple kinds of architectures.

MDH’s Python-Based User Interface

Matrix-Vector Multiplication (MatVec) expressed in MDH’s high-level program representation:

The above defined  matvec  function is used as follows:

MDH’s MLIR-Based User Interface

Here, functions  @mul  and  @add  are straightforward, user-defined functions for computing scalar multiplication or scalar
addition, respectively (both not shown for brevity). Functions  cc  and  pw  are pre-implemented combine operators for
computing concatenation ( cc ) or point-wise operations ( pw ), respectively.

Automatic Parallelization & Optimization

Additionally, MDH supports as inputs – as an alternative to DSL programs in MDH’s high-level programming interface (shown
above) – also straightforward (annotated) sequential program code. For our MatVec example, our Python-based input code
is of the following form:

This program is completely equivalent to the DSL-based MDH program for MatVec shown above and used exactly the same:

Schedule-Based Optimization Process

MDH optionally allows incorporating expert knowledge into the optimization process, using its scheduling language. By
incorporating the user into the optimization process, we enable two major advantages over the standard MDH workflow:

1. better optimization, as an auto-tuning system might not always make the same high-quality optimization decisions as a
human expert

2. faster auto-tuning, as some (or even all) optimization decisions might be made by the expert user and thus are not left to
the costly auto-tuner
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MatVec Jacobi1D

def matvec(T: ScalarType, I: int, K: int):
    @mdh( out( w = Buffer[T, [I]]                        ) ,
          inp( M = Buffer[T, [I, K]], v = Buffer[T, [K]] ) )
    def mdh_matvec():
        def mul(out, inp):
            out['w'] = inp['M'] * inp['v']

        def scalar_plus(res, lhs, rhs):
            res['w'] = lhs['w'] + rhs['w']

        return (
            out_view[T]( w = [lambda i, k: (i)] ),
              md_hom[I, K]( mul, ( CC, PW(scalar_plus) ) ),
                inp_view[T, T]( M = [lambda i, k: (i, k)] ,
                                v = [lambda i, k: (k)   ] )
        )

# MatVec on 1024x1024-sized input matrix and 1024-sized vector (both containing fp32 values)
matvec__fp32__1024_1024 = matvec( fp32, 1024,1024 )

# ... (CUDA host code: create CUDA context, CUDA buffers for "M","v", "w", etc.)

# Get MDH "CUDA Module" for MatVec (using ATF-tuned optimizations)
cuda__matvec__fp32__1024_1024 = matvec__fp32__1024_1024.get_module( CUDA(), pyATF( CUDARuntimeProfiler(), evaluations(1000) ) )

# MDH CUDA Module: compile & load CUDA code
a100_cuda__matvec__fp32__1024_1024 = cuda__matvec__fp32__1024_1024.compile( arch='compute_80' )

# MDH CUDA Module: run MatVec on M,v to obtain w
a100_cuda__matvec__fp32__1024_1024.run( w,M,v )

# MDH CUDA Module: destroy module
a100_cuda__matvec__fp32__1024_1024.destroy()

# ... (CUDA host code: destroying CUDA context, freeing CUDA buffers, etc.)

MatVec Jacobi1D

func.func @main()
{
  %M = memref.alloc() : memref<128x64xf32>
  %v = memref.alloc() : memref<64xf32>

  %w = mdh.compute "mdh_matvec"
  {
    inp_view =
    [
      [ affine_map<( i,k ) -> ( i,k )> ],
      [ affine_map<( i,k ) -> ( k )  > ]
    ],

    md_hom =
    {
      scalar_func = @mul,
      combine_ops = [ "cc", ["pw",@add] ]
    },

    out_view =
    [
      [ affine_map<( i,k ) -> ( i )> ]
    ]
  }
  {
    inp_types = [ f32, f32 ],
    mda_size  = [ 128,64 ],
    out_types = [ f32 ]
  }( %M,%v ) :
   ( memref<128x64xf32> ,
     memref<64xf32>     ) -> memref<128xf32>

  return
}

def matvec(T: ScalarType, I: int, K: int):
    @mdh( out( w = Buffer[T, [I]]                        ) ,
          inp( M = Buffer[T, [I, K]], v = Buffer[T, [K]] ) ,
          combine_ops = ( CC, PW(scalar_plus) )            )
    def mdh_matvec(w, M, v):
        for i in range(I):
            for k in range(K):
                w[i] = M[i, k] * v[k]

# MatVec on 1024x1024-sized input matrix and 1024-sized vector (both containing fp32 values)
matvec__fp32__1024_1024 = matvec( fp32, 1024,1024 )

# ... (CUDA host code: create CUDA context, CUDA buffers for "M","v", "w", etc.)

# Get MDH "CUDA Module" for MatVec (using ATF-tuned optimizations)
cuda__matvec__fp32__1024_1024 = matvec__fp32__1024_1024.get_module( CUDA(), pyATF( CUDARuntimeProfiler(), evaluations(1000) ) )

# MDH CUDA Module: compile & load CUDA code
a100_cuda__matvec__fp32__1024_1024 = cuda__matvec__fp32__1024_1024.compile( arch='compute_80' )

# MDH CUDA Module: run MatVec on M,v to obtain w
a100_cuda__matvec__fp32__1024_1024.run( w,M,v )

# MDH CUDA Module: destroy module
a100_cuda__matvec__fp32__1024_1024.destroy()

# ... (CUDA host code: destroying CUDA context, freeing CUDA buffers, etc.)

(An example scheduling program follows soon)
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Data-parallel computations, such as linear algebra routines and stencil computations, constitute one of the most
relevant classes in parallel computing, e.g., due to their importance for deep learning. Efficiently de-composing
such computations for the memory and core hierarchies of modern architectures and re-composing the
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complex and error prone for the user.

We formally introduce a systematic (de/re)-composition approach, based on the algebraic formalism of
Multi-Dimensional Homomorphisms (MDHs). Our approach is designed as general enough to be applicable to
a wide range of data-parallel computations and for various kinds of target parallel architectures. To efficiently
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parallelization strategy. We show that our approach is powerful enough to express, in the same formalism, the
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etc.), and we demonstrate that the parameters of our strategies enable systematically generating code that
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the input and output data (e.g., their sizes and memory layouts). Particularly, our experiments confirm that
via auto-tuning, we achieve higher performance than state-of-the-art approaches, including hand-optimized
solutions provided by vendors (such as NVIDIA cuBLAS/cuDNN and Intel oneMKL/oneDNN), on real-world
datasets and for a variety of data-parallel computations, including linear algebra routines, stencil and quantum
chemistry computations, data mining algorithms, and computations that recently gained high attention due to
their relevance for deep learning.
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MDH is a (formal) framework for expressing & optimizing data-parallel computations:

8

The MDH Approach

MDH High-Level Representation of MatVec

<latexit sha1_base64="V+ouOnk9c+5GsvhGXvgvOvayikM="></latexit>

MatVec<T∈TYPE � I,K∈N> ∶= out view<T>( w:(i,k)�(i) ) ○
md hom<I,K>( *, (++,+) ) ○

inp view<T,T>( M:(i,k)�(i,k) , v:(i,k)�(k) )

MDH generates high-performance code for programs expressed in its High-Level Representation:

What is happening here: 

inp_view captures the accesses to input data

md_hom expresses the data-parallel computation (incl. reductions)

out_view captures the accesses to output data

In a nutshell
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functions (e.g., add, as in line 6 of Listing 8). Also, PRL relies on
user-de!ned basic types (lines 3-5 and line 47), and PRL computes
three individual output elements (N-sized vectors) and thus uses
three index functions for its output view (lines 41-43).

Quantum Chemistry. Our implementation of Coupled Cluster
(CCSD(T)) is shown in Listing 12 (ranges, such as A,B,C,..., ab-
breviated via ... in the listing, for brevity). The CCSD(T) imple-
mentation di"ers from previous computations (in Listings 8-11) by
accessing its input bu"ers in transposed fashions (lines 10-11), e.g.,
by using index function (a, ...,ω)↦ (ω,d,b,c) (line 10), instead of
(a, ...,ω)↦ (b,c,d,ω), for its four-dimensional input bu"er I1.

1def ccsdt( T:BasicType , A:int ,...,G:int ):

2@mdh()

3def ccsdt__T_A_B_C_D_E_F_G ():

4return (

5out_view[T](

6O = [lambda a,...,g: (a,...,f)] ),

7md_hom[A,...,G]( f_mul ,

8(cc,...,cc,pw(add)) ),

9inp_view[T,T](

10I1 = [lambda a,...,g: (g,d,b,c)] ,

11I2 = [lambda a,...,g: (e,f,g,a)] )

12)

13return ccsdt__T_A_B_C_D_E_F_G

Listing 12: CCSD(T) expressed in our DSL

Deep Learning. Listing 13 shows our DSL implementation of
Multi-Channel Convolution (MCC). In contrast to previous exam-
ples (Listings 8-12), MCC uses advanced variants of index functions
(lines 12-14), e.g., to access its img input bu"er (line 12-13) in a
strided fashion. Moreover, according to MCC’s usage in ResNet-50,
the img bu"er is (unnecessarily) enlarged in the second and third
dimension (lines 3-4).

4.2 The MDH Directive
TODO: bzgl Listing 14 in footnote sagen, dass SF idr gein-
lined angegeben und rekonstruiert wird (input/outputs von
SF anhand von decorator ablesen)

Listing 7 shows the general structure of our MDH pragma. -
TODO: Bu"er können auch Größe beinhalten Bu"er[ O_T1 , [
O_N1, ... ] ]

1def mcc( T:BasicType , N:int ,P:int ,Q:int ,K:int ,
2R:int ,S:int ,C:int ):

3@mdh( inp(img=Buffer[T,[N,(2*P)+R-1,

4(2*Q)+S-1,C]]) )

5def mcc__T_N_P_Q_K_R_S_C ():

6return (

7out_view[T](

8res = [lambda n,p,q,k,r,s,c: (n,p,q,k)] ),

9md_hom[N,P,Q,K,R,S,C]( f_mul ,

10(cc,cc,cc,cc,pw(add),pw(add),pw(add)) ),

11inp_view[T,T](

12img = [lambda n,p,q,k,r,s,c:

13(n, (2*p)+r, (2*q)+s, c)] ,

14flt = [lambda n,p,q,k,r,s,c: (k,r,s,c)] )

15)

16return mcc__T_N_P_Q_K_R_S_C

Listing 13: MCC expressed in our DSL

4.3 Transformation: MDH Directive to DSL

1 @mdh(out(IDF = Buffer[BSC_TYP], . . . , IDF = Buffer[BSC_TYP]
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#OB-times

),

2 inp(IDF = Buffer[BSC_TYP], . . . , IDF = Buffer[BSC_TYP]
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#IB-times

),

3 combine_ops( CO,...,CO

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
D-times

) )

4 def IDF( . . . )

5
for IDF in range(SIZE)
...
for IDF in range(SIZE)

⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌞

D-times

6 IDF[IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
OB

1 -times

], ..., IDF[IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
OB

#OB
-times

]

7 = SF(

8 IDF[IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
IB

1 -times

], ..., IDF[IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
IB

#IB
-times

])

Listing 14: General structure of our MDH Directive
(Python). Flexible parts are highlighted in gray (see List-
ing 15).

5. Any data-parallel computation is implemented in our DSL
using exactly the three higher-order functions inp_view, md_hom,
and out_view, and the three functions are always composed in the
same, !xed order. We argue that this minimalistic and structured
design enhances usability, while still guaranteeing high expressivity
(as thoroughly discussed by Rasch [8]).

We allow data-parallel computations to have an arbitrary number
of inputs (denoted as #IB in Listing 7). Each input has an arbitrary
name IDF (identi!er), e.g., "IDF = M" for the input matrix of MatVec
in Listing 8), and basic type BSC_TYP, e.g., fp32 or int64. Data ac-
cesses are expressed via index functions IDX_FNC (which we discuss
in detail in Section 4.3.1). For example, we use in line 7 of Listing 8
the index function (i,k)↦(i,k) to access the M input matrix of
MatVec. At each point of the iteration space, each bu"er can be
accessed multiple times; this is expressed in our DSL via multiple
index functions (e.g., three index functions for accessing the input
vector of Jacobi1D – lines 12-14 in Listing 10). The particular num-
ber of accesses is denoted as #ACCIB

b
in Listing 7 (e.g., #ACCIB1 = 3

for Jacobi1D), where b denotes the input bu"er at position b (e.g.,
b = 2 for the second input of MatVec in Listing8 – the input vector).

Output bu"ers are handled analogously to input bu"ers in our
DSL (Listing 7).

Our DSL (Listing 7) supports iteration spaces with an arbitrary di-
mensionality D and SIZE, e.g., a 3-dimensional space (I,J,K) of size
(1024,1024,1024) to compute MatMul on (1024x1024)-sized in-
put matrices. We allow arbitrary, user-de!ned Scalar Functions (SF)
and Combine Operators (CO), as we discuss in Sections 4.3.2-4.3.3.
Moreover, for user’s convenience, we also o"er pre-implemented
scalar functions and combine operators, e.g., f_mul for scalar multi-
plication (as used in Listings 8-9) and combine operators cc and pw

which together can already express a wide range of data-parallel
computations (e.g., those in Section 4.1).

Listing 15 shows how the #exible parts of our DSL (highlighted
gray in Listing 7) are allowed to be substituted. We support a range
5Formal details about our DSL are provided in the Appendix (Section ??).
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@mdh( ... )

def IDF():

return (

out_view[ BSC_TYP,...,BSC_TYP

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
#OB-times

](

IDF = [IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
OB

1 -times

]

...
IDF = [IDX_FNC, ..., IDX_FNC

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
#ACC

OB

#OB
-times

] ) ,

⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌞

#OB-times

md_hom[SIZE,...,SIZE

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
D-times

]( SF, (CO,...,CO

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
D-times

) ),

inp_view[ BSC_TYP,...,BSC_TYP

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
#IB-times

](

IDF = [IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
IB

1 -times

]

...
IDF = [IDX_FNC, ..., IDX_FNC

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
#ACC

IB

#IB
-times

] )

⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌞

#IB-times

)

Listing 8: General structure of the MDH DSL (Python). Flex-
ible parts are highlighted in gray (see Listing 16).

the number of accesses to the b-th input or output bu!er. For in-
stance, three accesses are counted when specifying v = [lambda

i,k: (k+0), lambda i,k: (k+1), lambda i,k: (k+2)], as
typically used in a 3-point stencil computation„ where all three
index expressions target the same bu!er v.

In the following, we introduce our MDH-based directive and
show how we generate a DSL program from it (as in Listing 8) which
allows using the existing MDH pipeline for generating executable
code.

4 The MDH Directive
We "rst introduce our MDH-based directive for tensor computa-
tions through examples in Section 4.1. We then discuss its general
structure in Section ??, and "nally, demonstrate how to generate
an MDH DSL program from it in Section ??.

4.1 Introductory Examples
To promote both productivity and user accessibility, our approach
adopts Python as the host language. We implement our directive
as a so-called Python decorator (the same as Numba – line ?? in
Listing 4) which is a native Python language construct that can be
elegantly used for code annotations.

Linear Algebra. Listings 9 and 10 show how linear algebra rou-
tines Matrix-Vector Multiplication (MatVec) and Matrix Multiplica-
tion (MatMul) are optimized using our MDH directive (lines ??-??
in Listing 9, and lines ??-?? in Listing 10).

From Listing 9, we observe that our MDH directive indicates the
input and output bu!ers together with their corresponding basic
type T (lines 2-3), e.g., T=fp32. In particular, our directive captures

1 def matvec( T:BasicType , I:int ,K:int ):

2 @mdh( out( w = Buffer[T] ) ,

3 inp( M = Buffer[T], v = Buffer[T] ) ,

4 combine_ops( cc, pw(add) ) )

5 def mdh_matvec__T_I_K( w, M,v ):

6 for i in range(I):
7 for k in range(K):
8 w[i] = M[i,k] * v[k]

9 return mdh_matvec__T_I_K

Listing 9: MatVec optimized via MDH Directive (Python)

the combine operators (line 4), which are for MatVec concatenation
(cc) and point-wise addition (pw(add))5.

A key design di!erence of our approach, compared to the ex-
isting methods discussed in Section 2, lies in how the loop body
is structured (line ??). In our approach, the loop body computes
one individual point in the iteration space, without any reduction
computations – i.e., the combination of computed elements across
the iteration space – are not directly encoded within the loop body
(as via += in line 11 of Listing 2). Instead, the reductions are seman-
tically captured and expressed through our directive. As a result,
reduction operations (such as +=) are abstracted away from the
loop itself in our approach. While this separation may seem uncon-
ventional and may require some adaption, it provides a signi"cant
advantage: nested reductions can be naturally and concisely ex-
pressed in our approach (as elaborated later in this section), while
the related approaches usually not natively support nested reduc-
tions – complex workarounds are required (as also discussed later).

Also, as compared to OpenMP and OpenACC (Listings 2 and 3),
our approach does not require using additional temporary variables
for intermediate results (such as sum in Listings 2 and 3) or zero-
initializing result bu!ers (as Numba, see line 6 in Listing 4).

1def matmul( T:BasicType , I:int ,J:int ,K:int ):

2@mdh( out( C = Buffer[T] ) ,

3inp( A = Buffer[T], B = Buffer[T] ) ,

4combine_ops( cc , cc, pw(add) ) )

5def matmul__T_I_J_K( C, A,B ):

6for i in range(I):
7for j in range(J):
8for k in range(K):
9C[i,j] = A[i,k] * B[k,j]

10return matmul__T_I_J_K

Listing 10: MatMul expressed in our DSL

Listing 10 shows our directive for MatMul (lines 2-4) which is very
close to our directive for MatVec in Listing 9: apart from using di!er-
ent bu!er names (lines 2-5), our MatMul directive contains a further
cc dimension (line 4), because MatMul relies on a three-dimensional
iteration space that contains the additional j-dimension.

Stencil Computations. Listing 11 shows our directive applied to
the stencil computation Jacobi (Jacobi1D). This example is rela-
tively straightforward, as Jacobi1D operates over a regular one-
dimensional iteration space that does not involve any reduction
computations.
5 Operators cc and pw are pre-implemented by our system due to their frequent use
(their implementation are provided in the Appendix, Section ??, for the interested
reader).
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functions (e.g., add, as in line 6 of Listing 8). Also, PRL relies on
user-de!ned basic types (lines 3-5 and line 47), and PRL computes
three individual output elements (N-sized vectors) and thus uses
three index functions for its output view (lines 41-43).

Quantum Chemistry. Our implementation of Coupled Cluster
(CCSD(T)) is shown in Listing 12 (ranges, such as A,B,C,..., ab-
breviated via ... in the listing, for brevity). The CCSD(T) imple-
mentation di"ers from previous computations (in Listings 8-11) by
accessing its input bu"ers in transposed fashions (lines 10-11), e.g.,
by using index function (a, ...,ω)↦ (ω,d,b,c) (line 10), instead of
(a, ...,ω)↦ (b,c,d,ω), for its four-dimensional input bu"er I1.

1def ccsdt( T:BasicType , A:int ,...,G:int ):

2@mdh()

3def ccsdt__T_A_B_C_D_E_F_G ():

4return (

5out_view[T](

6O = [lambda a,...,g: (a,...,f)] ),

7md_hom[A,...,G]( f_mul ,

8(cc,...,cc,pw(add)) ),

9inp_view[T,T](

10I1 = [lambda a,...,g: (g,d,b,c)] ,

11I2 = [lambda a,...,g: (e,f,g,a)] )

12)

13return ccsdt__T_A_B_C_D_E_F_G

Listing 12: CCSD(T) expressed in our DSL

Deep Learning. Listing 13 shows our DSL implementation of
Multi-Channel Convolution (MCC). In contrast to previous exam-
ples (Listings 8-12), MCC uses advanced variants of index functions
(lines 12-14), e.g., to access its img input bu"er (line 12-13) in a
strided fashion. Moreover, according to MCC’s usage in ResNet-50,
the img bu"er is (unnecessarily) enlarged in the second and third
dimension (lines 3-4).

4.2 The MDH Directive
TODO: bzgl Listing 14 in footnote sagen, dass SF idr gein-
lined angegeben und rekonstruiert wird (input/outputs von
SF anhand von decorator ablesen)

Listing 7 shows the general structure of our MDH pragma. -
TODO: Bu"er können auch Größe beinhalten Bu"er[ O_T1 , [
O_N1, ... ] ]

1def mcc( T:BasicType , N:int ,P:int ,Q:int ,K:int ,
2R:int ,S:int ,C:int ):

3@mdh( inp(img=Buffer[T,[N,(2*P)+R-1,

4(2*Q)+S-1,C]]) )

5def mcc__T_N_P_Q_K_R_S_C ():

6return (

7out_view[T](

8res = [lambda n,p,q,k,r,s,c: (n,p,q,k)] ),

9md_hom[N,P,Q,K,R,S,C]( f_mul ,

10(cc,cc,cc,cc,pw(add),pw(add),pw(add)) ),

11inp_view[T,T](

12img = [lambda n,p,q,k,r,s,c:

13(n, (2*p)+r, (2*q)+s, c)] ,

14flt = [lambda n,p,q,k,r,s,c: (k,r,s,c)] )

15)

16return mcc__T_N_P_Q_K_R_S_C

Listing 13: MCC expressed in our DSL

4.3 Transformation: MDH Directive to DSL

1 @mdh(out(IDF = Buffer[BSC_TYP], . . . , IDF = Buffer[BSC_TYP]
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#OB-times

),

2 inp(IDF = Buffer[BSC_TYP], . . . , IDF = Buffer[BSC_TYP]
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#IB-times

),

3 combine_ops( CO,...,CO

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
D-times

) )

4 def IDF( . . . )

5
for IDF in range(SIZE)
...
for IDF in range(SIZE)

⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌞

D-times

6 IDF[IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
OB

1 -times

], ..., IDF[IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
OB

#OB
-times

]

7 = SF(

8 IDF[IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
IB

1 -times

], ..., IDF[IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
IB

#IB
-times

])

Listing 14: General structure of our MDH Directive
(Python). Flexible parts are highlighted in gray (see List-
ing 15).

5. Any data-parallel computation is implemented in our DSL
using exactly the three higher-order functions inp_view, md_hom,
and out_view, and the three functions are always composed in the
same, !xed order. We argue that this minimalistic and structured
design enhances usability, while still guaranteeing high expressivity
(as thoroughly discussed by Rasch [8]).

We allow data-parallel computations to have an arbitrary number
of inputs (denoted as #IB in Listing 7). Each input has an arbitrary
name IDF (identi!er), e.g., "IDF = M" for the input matrix of MatVec
in Listing 8), and basic type BSC_TYP, e.g., fp32 or int64. Data ac-
cesses are expressed via index functions IDX_FNC (which we discuss
in detail in Section 4.3.1). For example, we use in line 7 of Listing 8
the index function (i,k)↦(i,k) to access the M input matrix of
MatVec. At each point of the iteration space, each bu"er can be
accessed multiple times; this is expressed in our DSL via multiple
index functions (e.g., three index functions for accessing the input
vector of Jacobi1D – lines 12-14 in Listing 10). The particular num-
ber of accesses is denoted as #ACCIB

b
in Listing 7 (e.g., #ACCIB1 = 3

for Jacobi1D), where b denotes the input bu"er at position b (e.g.,
b = 2 for the second input of MatVec in Listing8 – the input vector).

Output bu"ers are handled analogously to input bu"ers in our
DSL (Listing 7).

Our DSL (Listing 7) supports iteration spaces with an arbitrary di-
mensionality D and SIZE, e.g., a 3-dimensional space (I,J,K) of size
(1024,1024,1024) to compute MatMul on (1024x1024)-sized in-
put matrices. We allow arbitrary, user-de!ned Scalar Functions (SF)
and Combine Operators (CO), as we discuss in Sections 4.3.2-4.3.3.
Moreover, for user’s convenience, we also o"er pre-implemented
scalar functions and combine operators, e.g., f_mul for scalar multi-
plication (as used in Listings 8-9) and combine operators cc and pw

which together can already express a wide range of data-parallel
computations (e.g., those in Section 4.1).

Listing 15 shows how the #exible parts of our DSL (highlighted
gray in Listing 7) are allowed to be substituted. We support a range
5Formal details about our DSL are provided in the Appendix (Section ??).
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@mdh( ... )

def IDF():

return (

out_view[ BSC_TYP,...,BSC_TYP

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
#OB-times

](

IDF = [IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
OB

1 -times

]

...
IDF = [IDX_FNC, ..., IDX_FNC

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
#ACC

OB

#OB
-times

] ) ,

⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌞

#OB-times

md_hom[SIZE,...,SIZE

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
D-times

]( SF, (CO,...,CO

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
D-times

) ),

inp_view[ BSC_TYP,...,BSC_TYP

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
#IB-times

](

IDF = [IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
IB

1 -times

]

...
IDF = [IDX_FNC, ..., IDX_FNC

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
#ACC

IB

#IB
-times

] )

⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌞

#IB-times

)

Listing 8: General structure of the MDH DSL (Python). Flex-
ible parts are highlighted in gray (see Listing 16).

the number of accesses to the b-th input or output bu!er. For in-
stance, three accesses are counted when specifying v = [lambda

i,k: (k+0), lambda i,k: (k+1), lambda i,k: (k+2)], as
typically used in a 3-point stencil computation„ where all three
index expressions target the same bu!er v.

In the following, we introduce our MDH-based directive and
show how we generate a DSL program from it (as in Listing 8) which
allows using the existing MDH pipeline for generating executable
code.

4 The MDH Directive
We "rst introduce our MDH-based directive for tensor computa-
tions through examples in Section 4.1. We then discuss its general
structure in Section ??, and "nally, demonstrate how to generate
an MDH DSL program from it in Section ??.

4.1 Introductory Examples
To promote both productivity and user accessibility, our approach
adopts Python as the host language. We implement our directive
as a so-called Python decorator (the same as Numba – line ?? in
Listing 4) which is a native Python language construct that can be
elegantly used for code annotations.

Linear Algebra. Listings 9 and 10 show how linear algebra rou-
tines Matrix-Vector Multiplication (MatVec) and Matrix Multiplica-
tion (MatMul) are optimized using our MDH directive (lines ??-??
in Listing 9, and lines ??-?? in Listing 10).

From Listing 9, we observe that our MDH directive indicates the
input and output bu!ers together with their corresponding basic
type T (lines 2-3), e.g., T=fp32. In particular, our directive captures

1 def matvec( T:BasicType , I:int ,K:int ):

2 @mdh( out( w = Buffer[T] ) ,

3 inp( M = Buffer[T], v = Buffer[T] ) ,

4 combine_ops( cc, pw(add) ) )

5 def mdh_matvec__T_I_K( w, M,v ):

6 for i in range(I):
7 for k in range(K):
8 w[i] = M[i,k] * v[k]

9 return mdh_matvec__T_I_K

Listing 9: MatVec optimized via MDH Directive (Python)

the combine operators (line 4), which are for MatVec concatenation
(cc) and point-wise addition (pw(add))5.

A key design di!erence of our approach, compared to the ex-
isting methods discussed in Section 2, lies in how the loop body
is structured (line ??). In our approach, the loop body computes
one individual point in the iteration space, without any reduction
computations – i.e., the combination of computed elements across
the iteration space – are not directly encoded within the loop body
(as via += in line 11 of Listing 2). Instead, the reductions are seman-
tically captured and expressed through our directive. As a result,
reduction operations (such as +=) are abstracted away from the
loop itself in our approach. While this separation may seem uncon-
ventional and may require some adaption, it provides a signi"cant
advantage: nested reductions can be naturally and concisely ex-
pressed in our approach (as elaborated later in this section), while
the related approaches usually not natively support nested reduc-
tions – complex workarounds are required (as also discussed later).

Also, as compared to OpenMP and OpenACC (Listings 2 and 3),
our approach does not require using additional temporary variables
for intermediate results (such as sum in Listings 2 and 3) or zero-
initializing result bu!ers (as Numba, see line 6 in Listing 4).

1def matmul( T:BasicType , I:int ,J:int ,K:int ):

2@mdh( out( C = Buffer[T] ) ,

3inp( A = Buffer[T], B = Buffer[T] ) ,

4combine_ops( cc , cc, pw(add) ) )

5def matmul__T_I_J_K( C, A,B ):

6for i in range(I):
7for j in range(J):
8for k in range(K):
9C[i,j] = A[i,k] * B[k,j]

10return matmul__T_I_J_K

Listing 10: MatMul expressed in our DSL

Listing 10 shows our directive for MatMul (lines 2-4) which is very
close to our directive for MatVec in Listing 9: apart from using di!er-
ent bu!er names (lines 2-5), our MatMul directive contains a further
cc dimension (line 4), because MatMul relies on a three-dimensional
iteration space that contains the additional j-dimension.

Stencil Computations. Listing 11 shows our directive applied to
the stencil computation Jacobi (Jacobi1D). This example is rela-
tively straightforward, as Jacobi1D operates over a regular one-
dimensional iteration space that does not involve any reduction
computations.
5 Operators cc and pw are pre-implemented by our system due to their frequent use
(their implementation are provided in the Appendix, Section ??, for the interested
reader).

4

Figure 1: Transformation of an MDH directive into MDH-DSL (data accesses)
6

9

Key Transformation

Python Program 
+ 

MDH Directive
MDH DSL Program

Our MDH-annotated Python code captures all input-relevant  
building blocks of the MDH-DSL program

Transform our MDH-directive-annotated Python programs into MDH-DSL representation:
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functions (e.g., add, as in line 6 of Listing 8). Also, PRL relies on
user-de!ned basic types (lines 3-5 and line 47), and PRL computes
three individual output elements (N-sized vectors) and thus uses
three index functions for its output view (lines 41-43).

Quantum Chemistry. Our implementation of Coupled Cluster
(CCSD(T)) is shown in Listing 12 (ranges, such as A,B,C,..., ab-
breviated via ... in the listing, for brevity). The CCSD(T) imple-
mentation di"ers from previous computations (in Listings 8-11) by
accessing its input bu"ers in transposed fashions (lines 10-11), e.g.,
by using index function (a, ...,ω)↦ (ω,d,b,c) (line 10), instead of
(a, ...,ω)↦ (b,c,d,ω), for its four-dimensional input bu"er I1.

1def ccsdt( T:BasicType , A:int ,...,G:int ):

2@mdh()

3def ccsdt__T_A_B_C_D_E_F_G ():

4return (

5out_view[T](

6O = [lambda a,...,g: (a,...,f)] ),

7md_hom[A,...,G]( f_mul ,

8(cc,...,cc,pw(add)) ),

9inp_view[T,T](

10I1 = [lambda a,...,g: (g,d,b,c)] ,

11I2 = [lambda a,...,g: (e,f,g,a)] )

12)

13return ccsdt__T_A_B_C_D_E_F_G

Listing 12: CCSD(T) expressed in our DSL

Deep Learning. Listing 13 shows our DSL implementation of
Multi-Channel Convolution (MCC). In contrast to previous exam-
ples (Listings 8-12), MCC uses advanced variants of index functions
(lines 12-14), e.g., to access its img input bu"er (line 12-13) in a
strided fashion. Moreover, according to MCC’s usage in ResNet-50,
the img bu"er is (unnecessarily) enlarged in the second and third
dimension (lines 3-4).

4.2 The MDH Directive
TODO: bzgl Listing 14 in footnote sagen, dass SF idr gein-
lined angegeben und rekonstruiert wird (input/outputs von
SF anhand von decorator ablesen)

Listing 7 shows the general structure of our MDH pragma. -
TODO: Bu"er können auch Größe beinhalten Bu"er[ O_T1 , [
O_N1, ... ] ]

1def mcc( T:BasicType , N:int ,P:int ,Q:int ,K:int ,
2R:int ,S:int ,C:int ):

3@mdh( inp(img=Buffer[T,[N,(2*P)+R-1,

4(2*Q)+S-1,C]]) )

5def mcc__T_N_P_Q_K_R_S_C ():

6return (

7out_view[T](

8res = [lambda n,p,q,k,r,s,c: (n,p,q,k)] ),

9md_hom[N,P,Q,K,R,S,C]( f_mul ,

10(cc,cc,cc,cc,pw(add),pw(add),pw(add)) ),

11inp_view[T,T](

12img = [lambda n,p,q,k,r,s,c:

13(n, (2*p)+r, (2*q)+s, c)] ,

14flt = [lambda n,p,q,k,r,s,c: (k,r,s,c)] )

15)

16return mcc__T_N_P_Q_K_R_S_C

Listing 13: MCC expressed in our DSL

4.3 Transformation: MDH Directive to DSL

1 @mdh(out(IDF = Buffer[BSC_TYP], . . . , IDF = Buffer[BSC_TYP]
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#OB-times

),

2 inp(IDF = Buffer[BSC_TYP], . . . , IDF = Buffer[BSC_TYP]
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#IB-times

),

3 combine_ops( CO,...,CO

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
D-times

) )

4 def IDF( . . . )

5
for IDF in range(SIZE)
...
for IDF in range(SIZE)

⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌞

D-times

6 IDF[IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
OB

1 -times

], ..., IDF[IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
OB

#OB
-times

]

7 = SF(

8 IDF[IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
IB

1 -times

], ..., IDF[IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
IB

#IB
-times

])

Listing 14: General structure of our MDH Directive
(Python). Flexible parts are highlighted in gray (see List-
ing 15).

5. Any data-parallel computation is implemented in our DSL
using exactly the three higher-order functions inp_view, md_hom,
and out_view, and the three functions are always composed in the
same, !xed order. We argue that this minimalistic and structured
design enhances usability, while still guaranteeing high expressivity
(as thoroughly discussed by Rasch [8]).

We allow data-parallel computations to have an arbitrary number
of inputs (denoted as #IB in Listing 7). Each input has an arbitrary
name IDF (identi!er), e.g., "IDF = M" for the input matrix of MatVec
in Listing 8), and basic type BSC_TYP, e.g., fp32 or int64. Data ac-
cesses are expressed via index functions IDX_FNC (which we discuss
in detail in Section 4.3.1). For example, we use in line 7 of Listing 8
the index function (i,k)↦(i,k) to access the M input matrix of
MatVec. At each point of the iteration space, each bu"er can be
accessed multiple times; this is expressed in our DSL via multiple
index functions (e.g., three index functions for accessing the input
vector of Jacobi1D – lines 12-14 in Listing 10). The particular num-
ber of accesses is denoted as #ACCIB

b
in Listing 7 (e.g., #ACCIB1 = 3

for Jacobi1D), where b denotes the input bu"er at position b (e.g.,
b = 2 for the second input of MatVec in Listing8 – the input vector).

Output bu"ers are handled analogously to input bu"ers in our
DSL (Listing 7).

Our DSL (Listing 7) supports iteration spaces with an arbitrary di-
mensionality D and SIZE, e.g., a 3-dimensional space (I,J,K) of size
(1024,1024,1024) to compute MatMul on (1024x1024)-sized in-
put matrices. We allow arbitrary, user-de!ned Scalar Functions (SF)
and Combine Operators (CO), as we discuss in Sections 4.3.2-4.3.3.
Moreover, for user’s convenience, we also o"er pre-implemented
scalar functions and combine operators, e.g., f_mul for scalar multi-
plication (as used in Listings 8-9) and combine operators cc and pw

which together can already express a wide range of data-parallel
computations (e.g., those in Section 4.1).

Listing 15 shows how the #exible parts of our DSL (highlighted
gray in Listing 7) are allowed to be substituted. We support a range
5Formal details about our DSL are provided in the Appendix (Section ??).
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@mdh( ... )

def IDF():

return (

out_view[ BSC_TYP,...,BSC_TYP

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
#OB-times

](

IDF = [IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
OB

1 -times

]

...
IDF = [IDX_FNC, ..., IDX_FNC

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
#ACC

OB

#OB
-times

] ) ,

⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌞

#OB-times

md_hom[SIZE,...,SIZE

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
D-times

]( SF, (CO,...,CO

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
D-times

) ),

inp_view[ BSC_TYP,...,BSC_TYP

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
#IB-times

](

IDF = [IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
IB

1 -times

]

...
IDF = [IDX_FNC, ..., IDX_FNC

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
#ACC

IB

#IB
-times

] )

⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌞

#IB-times

)

Listing 8: General structure of the MDH DSL (Python). Flex-
ible parts are highlighted in gray (see Listing 16).

the number of accesses to the b-th input or output bu!er. For in-
stance, three accesses are counted when specifying v = [lambda

i,k: (k+0), lambda i,k: (k+1), lambda i,k: (k+2)], as
typically used in a 3-point stencil computation„ where all three
index expressions target the same bu!er v.

In the following, we introduce our MDH-based directive and
show how we generate a DSL program from it (as in Listing 8) which
allows using the existing MDH pipeline for generating executable
code.

4 The MDH Directive
We "rst introduce our MDH-based directive for tensor computa-
tions through examples in Section 4.1. We then discuss its general
structure in Section ??, and "nally, demonstrate how to generate
an MDH DSL program from it in Section ??.

4.1 Introductory Examples
To promote both productivity and user accessibility, our approach
adopts Python as the host language. We implement our directive
as a so-called Python decorator (the same as Numba – line ?? in
Listing 4) which is a native Python language construct that can be
elegantly used for code annotations.

Linear Algebra. Listings 9 and 10 show how linear algebra rou-
tines Matrix-Vector Multiplication (MatVec) and Matrix Multiplica-
tion (MatMul) are optimized using our MDH directive (lines ??-??
in Listing 9, and lines ??-?? in Listing 10).

From Listing 9, we observe that our MDH directive indicates the
input and output bu!ers together with their corresponding basic
type T (lines 2-3), e.g., T=fp32. In particular, our directive captures

1 def matvec( T:BasicType , I:int ,K:int ):

2 @mdh( out( w = Buffer[T] ) ,

3 inp( M = Buffer[T], v = Buffer[T] ) ,

4 combine_ops( cc, pw(add) ) )

5 def mdh_matvec__T_I_K( w, M,v ):

6 for i in range(I):
7 for k in range(K):
8 w[i] = M[i,k] * v[k]

9 return mdh_matvec__T_I_K

Listing 9: MatVec optimized via MDH Directive (Python)

the combine operators (line 4), which are for MatVec concatenation
(cc) and point-wise addition (pw(add))5.

A key design di!erence of our approach, compared to the ex-
isting methods discussed in Section 2, lies in how the loop body
is structured (line ??). In our approach, the loop body computes
one individual point in the iteration space, without any reduction
computations – i.e., the combination of computed elements across
the iteration space – are not directly encoded within the loop body
(as via += in line 11 of Listing 2). Instead, the reductions are seman-
tically captured and expressed through our directive. As a result,
reduction operations (such as +=) are abstracted away from the
loop itself in our approach. While this separation may seem uncon-
ventional and may require some adaption, it provides a signi"cant
advantage: nested reductions can be naturally and concisely ex-
pressed in our approach (as elaborated later in this section), while
the related approaches usually not natively support nested reduc-
tions – complex workarounds are required (as also discussed later).

Also, as compared to OpenMP and OpenACC (Listings 2 and 3),
our approach does not require using additional temporary variables
for intermediate results (such as sum in Listings 2 and 3) or zero-
initializing result bu!ers (as Numba, see line 6 in Listing 4).

1def matmul( T:BasicType , I:int ,J:int ,K:int ):

2@mdh( out( C = Buffer[T] ) ,

3inp( A = Buffer[T], B = Buffer[T] ) ,

4combine_ops( cc , cc, pw(add) ) )

5def matmul__T_I_J_K( C, A,B ):

6for i in range(I):
7for j in range(J):
8for k in range(K):
9C[i,j] = A[i,k] * B[k,j]

10return matmul__T_I_J_K

Listing 10: MatMul expressed in our DSL

Listing 10 shows our directive for MatMul (lines 2-4) which is very
close to our directive for MatVec in Listing 9: apart from using di!er-
ent bu!er names (lines 2-5), our MatMul directive contains a further
cc dimension (line 4), because MatMul relies on a three-dimensional
iteration space that contains the additional j-dimension.

Stencil Computations. Listing 11 shows our directive applied to
the stencil computation Jacobi (Jacobi1D). This example is rela-
tively straightforward, as Jacobi1D operates over a regular one-
dimensional iteration space that does not involve any reduction
computations.
5 Operators cc and pw are pre-implemented by our system due to their frequent use
(their implementation are provided in the Appendix, Section ??, for the interested
reader).
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functions (e.g., add, as in line 6 of Listing 8). Also, PRL relies on
user-de!ned basic types (lines 3-5 and line 47), and PRL computes
three individual output elements (N-sized vectors) and thus uses
three index functions for its output view (lines 41-43).

Quantum Chemistry. Our implementation of Coupled Cluster
(CCSD(T)) is shown in Listing 12 (ranges, such as A,B,C,..., ab-
breviated via ... in the listing, for brevity). The CCSD(T) imple-
mentation di"ers from previous computations (in Listings 8-11) by
accessing its input bu"ers in transposed fashions (lines 10-11), e.g.,
by using index function (a, ...,ω)↦ (ω,d,b,c) (line 10), instead of
(a, ...,ω)↦ (b,c,d,ω), for its four-dimensional input bu"er I1.

1def ccsdt( T:BasicType , A:int ,...,G:int ):

2@mdh()

3def ccsdt__T_A_B_C_D_E_F_G ():

4return (

5out_view[T](

6O = [lambda a,...,g: (a,...,f)] ),

7md_hom[A,...,G]( f_mul ,

8(cc,...,cc,pw(add)) ),

9inp_view[T,T](

10I1 = [lambda a,...,g: (g,d,b,c)] ,

11I2 = [lambda a,...,g: (e,f,g,a)] )

12)

13return ccsdt__T_A_B_C_D_E_F_G

Listing 12: CCSD(T) expressed in our DSL

Deep Learning. Listing 13 shows our DSL implementation of
Multi-Channel Convolution (MCC). In contrast to previous exam-
ples (Listings 8-12), MCC uses advanced variants of index functions
(lines 12-14), e.g., to access its img input bu"er (line 12-13) in a
strided fashion. Moreover, according to MCC’s usage in ResNet-50,
the img bu"er is (unnecessarily) enlarged in the second and third
dimension (lines 3-4).

4.2 The MDH Directive
TODO: bzgl Listing 14 in footnote sagen, dass SF idr gein-
lined angegeben und rekonstruiert wird (input/outputs von
SF anhand von decorator ablesen)

Listing 7 shows the general structure of our MDH pragma. -
TODO: Bu"er können auch Größe beinhalten Bu"er[ O_T1 , [
O_N1, ... ] ]

1def mcc( T:BasicType , N:int ,P:int ,Q:int ,K:int ,
2R:int ,S:int ,C:int ):

3@mdh( inp(img=Buffer[T,[N,(2*P)+R-1,

4(2*Q)+S-1,C]]) )

5def mcc__T_N_P_Q_K_R_S_C ():

6return (

7out_view[T](

8res = [lambda n,p,q,k,r,s,c: (n,p,q,k)] ),

9md_hom[N,P,Q,K,R,S,C]( f_mul ,

10(cc,cc,cc,cc,pw(add),pw(add),pw(add)) ),

11inp_view[T,T](

12img = [lambda n,p,q,k,r,s,c:

13(n, (2*p)+r, (2*q)+s, c)] ,

14flt = [lambda n,p,q,k,r,s,c: (k,r,s,c)] )

15)

16return mcc__T_N_P_Q_K_R_S_C

Listing 13: MCC expressed in our DSL

4.3 Transformation: MDH Directive to DSL

1 @mdh(out(IDF = Buffer[BSC_TYP], . . . , IDF = Buffer[BSC_TYP]
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#OB-times

),

2 inp(IDF = Buffer[BSC_TYP], . . . , IDF = Buffer[BSC_TYP]
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#IB-times

),

3 combine_ops( CO,...,CO

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
D-times

) )

4 def IDF( . . . )

5
for IDF in range(SIZE)
...
for IDF in range(SIZE)

⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌞

D-times

6 IDF[IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
OB

1 -times

], ..., IDF[IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
OB

#OB
-times

]

7 = SF(

8 IDF[IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
IB

1 -times

], ..., IDF[IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
IB

#IB
-times

])

Listing 14: General structure of our MDH Directive
(Python). Flexible parts are highlighted in gray (see List-
ing 15).

5. Any data-parallel computation is implemented in our DSL
using exactly the three higher-order functions inp_view, md_hom,
and out_view, and the three functions are always composed in the
same, !xed order. We argue that this minimalistic and structured
design enhances usability, while still guaranteeing high expressivity
(as thoroughly discussed by Rasch [8]).

We allow data-parallel computations to have an arbitrary number
of inputs (denoted as #IB in Listing 7). Each input has an arbitrary
name IDF (identi!er), e.g., "IDF = M" for the input matrix of MatVec
in Listing 8), and basic type BSC_TYP, e.g., fp32 or int64. Data ac-
cesses are expressed via index functions IDX_FNC (which we discuss
in detail in Section 4.3.1). For example, we use in line 7 of Listing 8
the index function (i,k)↦(i,k) to access the M input matrix of
MatVec. At each point of the iteration space, each bu"er can be
accessed multiple times; this is expressed in our DSL via multiple
index functions (e.g., three index functions for accessing the input
vector of Jacobi1D – lines 12-14 in Listing 10). The particular num-
ber of accesses is denoted as #ACCIB

b
in Listing 7 (e.g., #ACCIB1 = 3

for Jacobi1D), where b denotes the input bu"er at position b (e.g.,
b = 2 for the second input of MatVec in Listing8 – the input vector).

Output bu"ers are handled analogously to input bu"ers in our
DSL (Listing 7).

Our DSL (Listing 7) supports iteration spaces with an arbitrary di-
mensionality D and SIZE, e.g., a 3-dimensional space (I,J,K) of size
(1024,1024,1024) to compute MatMul on (1024x1024)-sized in-
put matrices. We allow arbitrary, user-de!ned Scalar Functions (SF)
and Combine Operators (CO), as we discuss in Sections 4.3.2-4.3.3.
Moreover, for user’s convenience, we also o"er pre-implemented
scalar functions and combine operators, e.g., f_mul for scalar multi-
plication (as used in Listings 8-9) and combine operators cc and pw

which together can already express a wide range of data-parallel
computations (e.g., those in Section 4.1).

Listing 15 shows how the #exible parts of our DSL (highlighted
gray in Listing 7) are allowed to be substituted. We support a range
5Formal details about our DSL are provided in the Appendix (Section ??).
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@mdh( ... )

def IDF():

return (

out_view[ BSC_TYP,...,BSC_TYP

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
#OB-times

](

IDF = [IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
OB

1 -times

]

...
IDF = [IDX_FNC, ..., IDX_FNC

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
#ACC

OB

#OB
-times

] ) ,

⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌞

#OB-times

md_hom[SIZE,...,SIZE

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
D-times

]( SF, (CO,...,CO

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
D-times

) ),

inp_view[ BSC_TYP,...,BSC_TYP

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
#IB-times

](

IDF = [IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
IB

1 -times

]

...
IDF = [IDX_FNC, ..., IDX_FNC

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
#ACC

IB

#IB
-times

] )

⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌞

#IB-times

)

Listing 8: General structure of the MDH DSL (Python). Flex-
ible parts are highlighted in gray (see Listing 16).

the number of accesses to the b-th input or output bu!er. For in-
stance, three accesses are counted when specifying v = [lambda

i,k: (k+0), lambda i,k: (k+1), lambda i,k: (k+2)], as
typically used in a 3-point stencil computation„ where all three
index expressions target the same bu!er v.

In the following, we introduce our MDH-based directive and
show how we generate a DSL program from it (as in Listing 8) which
allows using the existing MDH pipeline for generating executable
code.

4 The MDH Directive
We "rst introduce our MDH-based directive for tensor computa-
tions through examples in Section 4.1. We then discuss its general
structure in Section ??, and "nally, demonstrate how to generate
an MDH DSL program from it in Section ??.

4.1 Introductory Examples
To promote both productivity and user accessibility, our approach
adopts Python as the host language. We implement our directive
as a so-called Python decorator (the same as Numba – line ?? in
Listing 4) which is a native Python language construct that can be
elegantly used for code annotations.

Linear Algebra. Listings 9 and 10 show how linear algebra rou-
tines Matrix-Vector Multiplication (MatVec) and Matrix Multiplica-
tion (MatMul) are optimized using our MDH directive (lines ??-??
in Listing 9, and lines ??-?? in Listing 10).

From Listing 9, we observe that our MDH directive indicates the
input and output bu!ers together with their corresponding basic
type T (lines 2-3), e.g., T=fp32. In particular, our directive captures

1 def matvec( T:BasicType , I:int ,K:int ):

2 @mdh( out( w = Buffer[T] ) ,

3 inp( M = Buffer[T], v = Buffer[T] ) ,

4 combine_ops( cc, pw(add) ) )

5 def mdh_matvec__T_I_K( w, M,v ):

6 for i in range(I):
7 for k in range(K):
8 w[i] = M[i,k] * v[k]

9 return mdh_matvec__T_I_K

Listing 9: MatVec optimized via MDH Directive (Python)

the combine operators (line 4), which are for MatVec concatenation
(cc) and point-wise addition (pw(add))5.

A key design di!erence of our approach, compared to the ex-
isting methods discussed in Section 2, lies in how the loop body
is structured (line ??). In our approach, the loop body computes
one individual point in the iteration space, without any reduction
computations – i.e., the combination of computed elements across
the iteration space – are not directly encoded within the loop body
(as via += in line 11 of Listing 2). Instead, the reductions are seman-
tically captured and expressed through our directive. As a result,
reduction operations (such as +=) are abstracted away from the
loop itself in our approach. While this separation may seem uncon-
ventional and may require some adaption, it provides a signi"cant
advantage: nested reductions can be naturally and concisely ex-
pressed in our approach (as elaborated later in this section), while
the related approaches usually not natively support nested reduc-
tions – complex workarounds are required (as also discussed later).

Also, as compared to OpenMP and OpenACC (Listings 2 and 3),
our approach does not require using additional temporary variables
for intermediate results (such as sum in Listings 2 and 3) or zero-
initializing result bu!ers (as Numba, see line 6 in Listing 4).

1def matmul( T:BasicType , I:int ,J:int ,K:int ):

2@mdh( out( C = Buffer[T] ) ,

3inp( A = Buffer[T], B = Buffer[T] ) ,

4combine_ops( cc , cc, pw(add) ) )

5def matmul__T_I_J_K( C, A,B ):

6for i in range(I):
7for j in range(J):
8for k in range(K):
9C[i,j] = A[i,k] * B[k,j]

10return matmul__T_I_J_K

Listing 10: MatMul expressed in our DSL

Listing 10 shows our directive for MatMul (lines 2-4) which is very
close to our directive for MatVec in Listing 9: apart from using di!er-
ent bu!er names (lines 2-5), our MatMul directive contains a further
cc dimension (line 4), because MatMul relies on a three-dimensional
iteration space that contains the additional j-dimension.

Stencil Computations. Listing 11 shows our directive applied to
the stencil computation Jacobi (Jacobi1D). This example is rela-
tively straightforward, as Jacobi1D operates over a regular one-
dimensional iteration space that does not involve any reduction
computations.
5 Operators cc and pw are pre-implemented by our system due to their frequent use
(their implementation are provided in the Appendix, Section ??, for the interested
reader).

4

Figure 1: Transformation of an MDH directive into MDH-DSL (data accesses)
6

Python Program 
+ 

MDH Directive

MDH DSL Program

Our MDH-annotated Python code captures all output-relevant  
building blocks of the MDH-DSL program

Transform our MDH-directive-annotated Python programs into MDH-DSL representation:
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functions (e.g., add, as in line 6 of Listing 8). Also, PRL relies on
user-de!ned basic types (lines 3-5 and line 47), and PRL computes
three individual output elements (N-sized vectors) and thus uses
three index functions for its output view (lines 41-43).

Quantum Chemistry. Our implementation of Coupled Cluster
(CCSD(T)) is shown in Listing 12 (ranges, such as A,B,C,..., ab-
breviated via ... in the listing, for brevity). The CCSD(T) imple-
mentation di"ers from previous computations (in Listings 8-11) by
accessing its input bu"ers in transposed fashions (lines 10-11), e.g.,
by using index function (a, ...,ω)↦ (ω,d,b,c) (line 10), instead of
(a, ...,ω)↦ (b,c,d,ω), for its four-dimensional input bu"er I1.

1def ccsdt( T:BasicType , A:int ,...,G:int ):

2@mdh()

3def ccsdt__T_A_B_C_D_E_F_G ():

4return (

5out_view[T](

6O = [lambda a,...,g: (a,...,f)] ),

7md_hom[A,...,G]( f_mul ,

8(cc,...,cc,pw(add)) ),

9inp_view[T,T](

10I1 = [lambda a,...,g: (g,d,b,c)] ,

11I2 = [lambda a,...,g: (e,f,g,a)] )

12)

13return ccsdt__T_A_B_C_D_E_F_G

Listing 12: CCSD(T) expressed in our DSL

Deep Learning. Listing 13 shows our DSL implementation of
Multi-Channel Convolution (MCC). In contrast to previous exam-
ples (Listings 8-12), MCC uses advanced variants of index functions
(lines 12-14), e.g., to access its img input bu"er (line 12-13) in a
strided fashion. Moreover, according to MCC’s usage in ResNet-50,
the img bu"er is (unnecessarily) enlarged in the second and third
dimension (lines 3-4).

4.2 The MDH Directive
TODO: bzgl Listing 14 in footnote sagen, dass SF idr gein-
lined angegeben und rekonstruiert wird (input/outputs von
SF anhand von decorator ablesen)

Listing 7 shows the general structure of our MDH pragma. -
TODO: Bu"er können auch Größe beinhalten Bu"er[ O_T1 , [
O_N1, ... ] ]

1def mcc( T:BasicType , N:int ,P:int ,Q:int ,K:int ,
2R:int ,S:int ,C:int ):

3@mdh( inp(img=Buffer[T,[N,(2*P)+R-1,

4(2*Q)+S-1,C]]) )

5def mcc__T_N_P_Q_K_R_S_C ():

6return (

7out_view[T](

8res = [lambda n,p,q,k,r,s,c: (n,p,q,k)] ),

9md_hom[N,P,Q,K,R,S,C]( f_mul ,

10(cc,cc,cc,cc,pw(add),pw(add),pw(add)) ),

11inp_view[T,T](

12img = [lambda n,p,q,k,r,s,c:

13(n, (2*p)+r, (2*q)+s, c)] ,

14flt = [lambda n,p,q,k,r,s,c: (k,r,s,c)] )

15)

16return mcc__T_N_P_Q_K_R_S_C

Listing 13: MCC expressed in our DSL

4.3 Transformation: MDH Directive to DSL

1 @mdh(out(IDF = Buffer[BSC_TYP], . . . , IDF = Buffer[BSC_TYP]
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#OB-times

),

2 inp(IDF = Buffer[BSC_TYP], . . . , IDF = Buffer[BSC_TYP]
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#IB-times

),

3 combine_ops( CO,...,CO

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
D-times

) )

4 def IDF( . . . )

5
for IDF in range(SIZE)
...
for IDF in range(SIZE)

⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌞

D-times

6 IDF[IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
OB

1 -times

], ..., IDF[IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
OB

#OB
-times

]

7 = SF(

8 IDF[IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
IB

1 -times

], ..., IDF[IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
IB

#IB
-times

])

Listing 14: General structure of our MDH Directive
(Python). Flexible parts are highlighted in gray (see List-
ing 15).

5. Any data-parallel computation is implemented in our DSL
using exactly the three higher-order functions inp_view, md_hom,
and out_view, and the three functions are always composed in the
same, !xed order. We argue that this minimalistic and structured
design enhances usability, while still guaranteeing high expressivity
(as thoroughly discussed by Rasch [8]).

We allow data-parallel computations to have an arbitrary number
of inputs (denoted as #IB in Listing 7). Each input has an arbitrary
name IDF (identi!er), e.g., "IDF = M" for the input matrix of MatVec
in Listing 8), and basic type BSC_TYP, e.g., fp32 or int64. Data ac-
cesses are expressed via index functions IDX_FNC (which we discuss
in detail in Section 4.3.1). For example, we use in line 7 of Listing 8
the index function (i,k)↦(i,k) to access the M input matrix of
MatVec. At each point of the iteration space, each bu"er can be
accessed multiple times; this is expressed in our DSL via multiple
index functions (e.g., three index functions for accessing the input
vector of Jacobi1D – lines 12-14 in Listing 10). The particular num-
ber of accesses is denoted as #ACCIB

b
in Listing 7 (e.g., #ACCIB1 = 3

for Jacobi1D), where b denotes the input bu"er at position b (e.g.,
b = 2 for the second input of MatVec in Listing8 – the input vector).

Output bu"ers are handled analogously to input bu"ers in our
DSL (Listing 7).

Our DSL (Listing 7) supports iteration spaces with an arbitrary di-
mensionality D and SIZE, e.g., a 3-dimensional space (I,J,K) of size
(1024,1024,1024) to compute MatMul on (1024x1024)-sized in-
put matrices. We allow arbitrary, user-de!ned Scalar Functions (SF)
and Combine Operators (CO), as we discuss in Sections 4.3.2-4.3.3.
Moreover, for user’s convenience, we also o"er pre-implemented
scalar functions and combine operators, e.g., f_mul for scalar multi-
plication (as used in Listings 8-9) and combine operators cc and pw

which together can already express a wide range of data-parallel
computations (e.g., those in Section 4.1).

Listing 15 shows how the #exible parts of our DSL (highlighted
gray in Listing 7) are allowed to be substituted. We support a range
5Formal details about our DSL are provided in the Appendix (Section ??).
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@mdh( ... )

def IDF():

return (

out_view[ BSC_TYP,...,BSC_TYP

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
#OB-times

](

IDF = [IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
OB

1 -times

]

...
IDF = [IDX_FNC, ..., IDX_FNC

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
#ACC

OB

#OB
-times

] ) ,

⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌞

#OB-times

md_hom[SIZE,...,SIZE

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
D-times

]( SF, (CO,...,CO

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
D-times

) ),

inp_view[ BSC_TYP,...,BSC_TYP

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
#IB-times

](

IDF = [IDX_FNC, ..., IDX_FNC
⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝

#ACC
IB

1 -times

]

...
IDF = [IDX_FNC, ..., IDX_FNC

⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌜⌝
#ACC

IB

#IB
-times

] )

⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌝⌞

#IB-times

)

Listing 8: General structure of the MDH DSL (Python). Flex-
ible parts are highlighted in gray (see Listing 16).

the number of accesses to the b-th input or output bu!er. For in-
stance, three accesses are counted when specifying v = [lambda

i,k: (k+0), lambda i,k: (k+1), lambda i,k: (k+2)], as
typically used in a 3-point stencil computation„ where all three
index expressions target the same bu!er v.

In the following, we introduce our MDH-based directive and
show how we generate a DSL program from it (as in Listing 8) which
allows using the existing MDH pipeline for generating executable
code.

4 The MDH Directive
We "rst introduce our MDH-based directive for tensor computa-
tions through examples in Section 4.1. We then discuss its general
structure in Section ??, and "nally, demonstrate how to generate
an MDH DSL program from it in Section ??.

4.1 Introductory Examples
To promote both productivity and user accessibility, our approach
adopts Python as the host language. We implement our directive
as a so-called Python decorator (the same as Numba – line ?? in
Listing 4) which is a native Python language construct that can be
elegantly used for code annotations.

Linear Algebra. Listings 9 and 10 show how linear algebra rou-
tines Matrix-Vector Multiplication (MatVec) and Matrix Multiplica-
tion (MatMul) are optimized using our MDH directive (lines ??-??
in Listing 9, and lines ??-?? in Listing 10).

From Listing 9, we observe that our MDH directive indicates the
input and output bu!ers together with their corresponding basic
type T (lines 2-3), e.g., T=fp32. In particular, our directive captures

1 def matvec( T:BasicType , I:int ,K:int ):

2 @mdh( out( w = Buffer[T] ) ,

3 inp( M = Buffer[T], v = Buffer[T] ) ,

4 combine_ops( cc, pw(add) ) )

5 def mdh_matvec__T_I_K( w, M,v ):

6 for i in range(I):
7 for k in range(K):
8 w[i] = M[i,k] * v[k]

9 return mdh_matvec__T_I_K

Listing 9: MatVec optimized via MDH Directive (Python)

the combine operators (line 4), which are for MatVec concatenation
(cc) and point-wise addition (pw(add))5.

A key design di!erence of our approach, compared to the ex-
isting methods discussed in Section 2, lies in how the loop body
is structured (line ??). In our approach, the loop body computes
one individual point in the iteration space, without any reduction
computations – i.e., the combination of computed elements across
the iteration space – are not directly encoded within the loop body
(as via += in line 11 of Listing 2). Instead, the reductions are seman-
tically captured and expressed through our directive. As a result,
reduction operations (such as +=) are abstracted away from the
loop itself in our approach. While this separation may seem uncon-
ventional and may require some adaption, it provides a signi"cant
advantage: nested reductions can be naturally and concisely ex-
pressed in our approach (as elaborated later in this section), while
the related approaches usually not natively support nested reduc-
tions – complex workarounds are required (as also discussed later).

Also, as compared to OpenMP and OpenACC (Listings 2 and 3),
our approach does not require using additional temporary variables
for intermediate results (such as sum in Listings 2 and 3) or zero-
initializing result bu!ers (as Numba, see line 6 in Listing 4).

1def matmul( T:BasicType , I:int ,J:int ,K:int ):

2@mdh( out( C = Buffer[T] ) ,

3inp( A = Buffer[T], B = Buffer[T] ) ,

4combine_ops( cc , cc, pw(add) ) )

5def matmul__T_I_J_K( C, A,B ):

6for i in range(I):
7for j in range(J):
8for k in range(K):
9C[i,j] = A[i,k] * B[k,j]

10return matmul__T_I_J_K

Listing 10: MatMul expressed in our DSL

Listing 10 shows our directive for MatMul (lines 2-4) which is very
close to our directive for MatVec in Listing 9: apart from using di!er-
ent bu!er names (lines 2-5), our MatMul directive contains a further
cc dimension (line 4), because MatMul relies on a three-dimensional
iteration space that contains the additional j-dimension.

Stencil Computations. Listing 11 shows our directive applied to
the stencil computation Jacobi (Jacobi1D). This example is rela-
tively straightforward, as Jacobi1D operates over a regular one-
dimensional iteration space that does not involve any reduction
computations.
5 Operators cc and pw are pre-implemented by our system due to their frequent use
(their implementation are provided in the Appendix, Section ??, for the interested
reader).
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Figure 2: Transformation of an MDH directive into MDH-DSL (computations)

Each loop level in the nest must be associated with a reduction
operator CO.10 The scalar function SF may access multiple elements
per bu!er (e.g., to express stencil computations, as in Listing 10).
These accesses are denoted generically in the listing as #ACCIB

b
and

#ACC
OB

b
for the b-th input or output bu!er, respectively.

Bu!ers can optionally declare their size (omitted in Listing 14
for brevity)—this is required, for example, when bu!ers are larger
than the accessed region (as in Listing 12).

4.3 Transformation: MDH Directive to DSL
Figures 1 and 2 illustrate the transformation from the MDH di-
rective (Listing 14) to an MDH DSL program (Listing 7). Through
this transformation, we can reuse the existing DSL-based MDH
compilation pipeline [32] to generate auto-tuned code for GPUs
and CPUs, incorporating tiling, data-movement, and parallelization
optimizations.

Figure 1 highlights the data-centric aspects of this transforma-
tion. The top and bottom parts of the "gure show output and input
data, respectively. The directive encodes all information needed to
instantiate the DSL’s higher-order functions out_view (for outputs)
and inp_view (for inputs).

Figure 2 focuses on the computation-centric aspects. It shows
how the directive provides all information required to instantiate
the md_hom higher-order function, which captures the data-parallel
computation in the MDH DSL.

10The MDH formalism [32] refers to reduction operators as Combine Operator (CO).

5 Experimental Results11

We evaluate the performance of the GPU and CPU code gener-
ated from our directive against state-of-the-art directive-based ap-
proaches: OpenACC and PPCG on GPUs, and OpenMP, Pluto, and
Numba on CPUs. For completeness, we also include highly tuned
vendor libraries, such as NVIDIA cuBLAS/cuDNN and Intel oneMK-
L/oneDNN, which provide assembly-optimized implementations
that often achieve near-peak hardware performance. In addition,
we evaluate TVM [12], a state-of-the-art DSL for portable high-
performance tensor computations on both GPUs and CPUs.

Auto-Tuning. Our approach is built on MDH and thus employs
fully automatic auto-tuning for both GPU and CPU code [32], using
the Auto-Tuning Framework (ATF) [35, 38]. Similarly, TVM uses its
own auto-tuning engine [47]. To minimize the impact of tuning
variability and ensure fair evaluation, we allocate a generous tuning
time of 12 hours for both frameworks. As auto-tuning performance
is not the primary focus of this work, we refer interested readers
to Rasch et al. [35] for an in-depth discussion.

By contrast, PPCG and Pluto use heuristics but also support auto-
tuning; for completeness, we report both heuristic and ATF-tuned
results (using also 12 h of tuning time).

Vendor libraries (cuBLAS, cuDNN, oneMKL, oneDNN) do not
support auto-tuning, presumably to avoid tuning overhead—even
though this overhead is often amortized in practice, especially in
deep learning workloads where tuned kernels are reused extensively
after one-time auto-tuning. Similarly, OpenMP, OpenACC, and
Numba also lack native auto-tuning support.12

11All experiments are fully reproducible using our artifact implementation [37].
12OpenACC provides a tile directive, and OpenMP allows manual tiling. Conse-
quently, both can potentially use auto-tuned tile sizes, but this requires the user to
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11

Transform our MDH-directive-annotated Python programs into MDH-DSL representation:

Key Transformation

Our MDH-annotated Python code captures all computation-relevant  
building blocks of the MDH-DSL program

Python Program 
+ 

MDH Directive

MDH DSL Program
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Computation Characteristics Data Characteristics

Computation Iter. Space Red. Dim. Data Acc. Inp. Sizes Basic Type Domain

Dot 1D ✓ Inj. 1 2²⁴ 2²⁴ fp32 Simulation
2 10⁷ 10⁷ fp32 Simulation

MatVec 2D ✓ Non-Inj. 1 4096x4096 4096 fp32 Simulation
2 8192x8192 8192 fp32 Simulation

MatMul 3D ✓ Non-Inj. 1 1024x1024 1024x1024 fp32 Simulation
2 1x2048 2048x1000 fp32 Deep Learning

MatMul^T 3D ✓ Non-Inj. 1 64x10 500x64 fp32 Deep Learning

bMatMul 4D ✓ Non-Inj. 1 16x10x64 16x64x500 fp32 Deep Learning

Gaussian_2D 2D Non-Inj. 1 224x224 fp32 Image Processing
2 4096x4096 fp32 Image Processing

Jacobi_3D 3D Non-Inj. 1 254x254x254 fp32 Simulation
2 510x510x510 fp32 Simulation

PRL 2D ✓ Non-Inj. 1 2¹⁰ 2¹⁵ {int64, chr46, fp64, ...} Data Mining
2 2¹⁵ 2¹⁵ {int64, chr46, fp64, ...} Data Mining

CCSD(T) 7D ✓ Non-Inj. 1 24x16x16x16 24x16x24x24 fp32 Quantum Chem.
2 24x16x24x16 24x16x24x16 fp32 Quantum Chem.

MCC 7D ✓ Non-Inj. 1 1x512x7x7 512x512x3x3 fp32 Deep Learning
2 1x230x230x3 64x7x7x3 fp32 Deep Learning

MCC_Caps 10D ✓ Non-Inj. 1 16x230x230x3x4x4 64x7x7x3x4x4 fp32 Deep Learning
2 1x230x230x3x4x4 67x7x7x3x4x4 fp32 Deep Learning

Figure 3: Characteristics of computations (left part of !gure) and data (right part). For each computation, we denote the
dimensionality of its iteration space and whether it contains reduction dimensions. For each data set, we denote its size, its
basic type, and its domain. Column "No." denotes the number of the data set per study.

Case Studies and Data Sets. Figure 3 summarizes our real-world
case studies, which exhibit a wide range of computational charac-
teristics: linear algebra routines (Dot, MatVec, and several variants
of MatMul), stencil computations (Gaussian_2D and Jacobi_3D),
a data mining example (PRL [34]), quantum chemistry workloads
(CCSD(T) [23]), and deep learning examples (MCC and MCC_Caps—a
generalized variant of MCC for capsule-style networks, known to be
particularly challenging to optimize [6]).

All our experiments use real-world data characteristics from
their respective domains, as detailed in Figure 3. For instance, for
PRL, which detects duplicate entries in databases, we use real-world
data from the German cancer registry EKR [19].

5.1 Experimental Setup
We conduct experiments on an NVIDIA A100-PCIE-40GB GPU and
an Intel Xeon Gold 6140 CPU.

Our evaluation is based on a software environment compris-
ing: OpenACC from the NVIDIA HPC SDK 22.1, OpenMP from
the Intel oneAPI Base Toolkit 2022.0.0, PPCG 0.08.4, Pluto (com-
mit 12e075a), Numba 0.61.2, and TVM 0.8.0. As vendor libraries,

explicitly express tiling, select tiling candidates, and integrate an external tuning
framework (e.g., ATF), as discussed later in this section.

we use NVIDIA cuBLAS and cuDNN from CUDA Toolkit 11.4, and
Intel oneMKL and oneDNN from Intel oneAPI Base Toolkit 2022.0.0.
In addition, we evaluate the EKR library [19], executed on Java
SE 1.8.0_281.

In all experiments, we collect measurements until the 99% con-
!dence interval was within 5% of our reported means, according
to the guidelines for scienti!c benchmarking of parallel computing
systems by Hoe"er and Belli [20].

5.2 Performance Results
Figure 4 shows the performance of our MDH-based directive ap-
proach, generating CUDA code for GPUs and OpenCL code for
CPUs, compared to related approaches. We observe that our method
consistently achieves higher performance, often exceeding other
approaches by orders of magnitude.

Compared to OpenACC, our approach achieves > 150⌐ speedup
for quantum-chemistry computation CCSD(T) across both input
sizes. This large gap stems from OpenACC’s inability to automat-
ically apply tiling optimizations. Manual tiling improves perfor-
mance but is error-prone and nontrivial: for instance, applying
the tile directive to all reduction-free loops—a seemingly safe
choice—produces incorrect results without warning. Tiling only
the !rst reduction-free loop slows execution, whereas empirically
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and represent performance-critical building blocks in domains such
as deep learning, scienti"c computing, and data analytics. Con-
sequently, achieving high performance for these computations—
across diverse architectures (such as GPUs and CPUs) and varying
data characteristics (e.g., size and memory layout)—remains a cen-
tral research challenge, as the e#ciency of important application
areas critically depends on the performance of their data-parallel
building blocks.

Directive-based approaches—ranging from established standards
like OpenACC [27] and OpenMP [28], to polyhedral compilers such
as PPCG [43] and Pluto [9], the increasingly adopted Numba [24]—
provide directive-based mechanisms for generating high-performing
GPU and CPU code from straightforward sequential code: users
annotate their code with so-called directives which are simple pro-
gram annotations that express opportunities for optimization and
parallelization, thereby freeing the user from hardware details and
manual low-level code optimizations.

While current directive-based approaches are widely adopted in
the community—due to their ease of use and often wide applicabil-
ity to general-purpose code—we argue in this paper that they leave
room for improvement in terms of performance and portability1. In
particular, our experiments show that for reduction-heavy compu-
tations, state-of-the-art approaches appear to be suboptimal—often
even for simple computations such as dot products.

The formalism of Multi-Dimensional Homomorphisms (MDH) [32]
was recently introduced as an algebraic framework for reason-
ing about and optimizing data-parallel computations. Its corre-
sponding implementation has demonstrated the ability to generate
high-performance, portable code—e.g., in CUDA for GPUs and in
OpenCL for CPUs—from an optimization- and hardware-agnostic
MDH-based Domain-Speci!c Language (DSL). Despite abstracting
away low-level concerns, DSL-based programming can still pose
a barrier to domain scientists—such as chemists, physicists, or AI
engineers—who may be unfamiliar with such abstractions.

This paper introduces a new directive-based approach grounded
in the formalism of MDH. In contrast to existing solutions, our
MDH directive intentionally specializes in data-parallel compu-
tations rather than general-purpose code2, enabling signi"cantly
higher and more portable performance within this speci"c domain.

1By portability, we refer not only to functional portability—the ability to run the same
source code on di!erent hardware architectures—but also to performance portability,
meaning that the code maintains consistently high performance across architectures
and data characteristics.
2According to MDH [32], we consider a computation data-parallel i! expressible as:

⌐1
𝐿1∈𝑀1 . . . ⌐𝑁

𝐿𝑁 ∈𝑀𝑁
𝐿 (𝑀[𝑁1, . . . , ß𝑁 ])

for an arbitrary function f and operators ⌐𝑂 (as illustrated by examples later).
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Figure 4: Speedup (higher is better for our approach) of our generated code compared to state-of-art approaches

identifying and tiling four speci!c loops (via trial and error) raises
OpenACC’s performance to about 60⌐ slower than our approach,
compared to 150⌐ slower without tiling. Further manual tuning
migh narrow the gap but demands substantial programming e"ort,
thereby undermining the goal of directive-based approaches aimed
at full automation.

OpenMP exhibits similar limitations, as it requires explicit man-
ual tiling to achieve higher performance. Unlike OpenACC, how-
ever, it provides no built-in tile directive, which makes tiling
technically cumbersome to express.

These challenges also account for the superior performance of
our approach over OpenACC and OpenMP in other benchmarks
such as MatMul and deep-learning computations.

Compared to polyhedral compilers, our approach achieves higher
performance, primarily because it handles reduction computations
more e"ectively—an area where polyhedral techniques still face
challenges [13].

An interesting observation involves the dot and PRL bench-
marks. The dot computation is reduction-heavy, and polyhedral
compilers—despite their strong optimizations—fail to deliver high
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and represent performance-critical building blocks in domains such
as deep learning, scienti"c computing, and data analytics. Con-
sequently, achieving high performance for these computations—
across diverse architectures (such as GPUs and CPUs) and varying
data characteristics (e.g., size and memory layout)—remains a cen-
tral research challenge, as the e#ciency of important application
areas critically depends on the performance of their data-parallel
building blocks.

Directive-based approaches—ranging from established standards
like OpenACC [27] and OpenMP [28], to polyhedral compilers such
as PPCG [43] and Pluto [9], the increasingly adopted Numba [24]—
provide directive-based mechanisms for generating high-performing
GPU and CPU code from straightforward sequential code: users
annotate their code with so-called directives which are simple pro-
gram annotations that express opportunities for optimization and
parallelization, thereby freeing the user from hardware details and
manual low-level code optimizations.

While current directive-based approaches are widely adopted in
the community—due to their ease of use and often wide applicabil-
ity to general-purpose code—we argue in this paper that they leave
room for improvement in terms of performance and portability1. In
particular, our experiments show that for reduction-heavy compu-
tations, state-of-the-art approaches appear to be suboptimal—often
even for simple computations such as dot products.

The formalism of Multi-Dimensional Homomorphisms (MDH) [32]
was recently introduced as an algebraic framework for reason-
ing about and optimizing data-parallel computations. Its corre-
sponding implementation has demonstrated the ability to generate
high-performance, portable code—e.g., in CUDA for GPUs and in
OpenCL for CPUs—from an optimization- and hardware-agnostic
MDH-based Domain-Speci!c Language (DSL). Despite abstracting
away low-level concerns, DSL-based programming can still pose
a barrier to domain scientists—such as chemists, physicists, or AI
engineers—who may be unfamiliar with such abstractions.

This paper introduces a new directive-based approach grounded
in the formalism of MDH. In contrast to existing solutions, our
MDH directive intentionally specializes in data-parallel compu-
tations rather than general-purpose code2, enabling signi"cantly
higher and more portable performance within this speci"c domain.

1By portability, we refer not only to functional portability—the ability to run the same
source code on di!erent hardware architectures—but also to performance portability,
meaning that the code maintains consistently high performance across architectures
and data characteristics.
2According to MDH [32], we consider a computation data-parallel i! expressible as:

⌐1
𝐿1∈𝑀1 . . . ⌐𝑁

𝐿𝑁 ∈𝑀𝑁
𝐿 (𝑀[𝑁1, . . . , ß𝑁 ])

for an arbitrary function f and operators ⌐𝑂 (as illustrated by examples later).
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identifying and tiling four speci!c loops (via trial and error) raises
OpenACC’s performance to about 60⌐ slower than our approach,
compared to 150⌐ slower without tiling. Further manual tuning
migh narrow the gap but demands substantial programming e"ort,
thereby undermining the goal of directive-based approaches aimed
at full automation.

OpenMP exhibits similar limitations, as it requires explicit man-
ual tiling to achieve higher performance. Unlike OpenACC, how-
ever, it provides no built-in tile directive, which makes tiling
technically cumbersome to express.

These challenges also account for the superior performance of
our approach over OpenACC and OpenMP in other benchmarks
such as MatMul and deep-learning computations.

Compared to polyhedral compilers, our approach achieves higher
performance, primarily because it handles reduction computations
more e"ectively—an area where polyhedral techniques still face
challenges [13].

An interesting observation involves the dot and PRL bench-
marks. The dot computation is reduction-heavy, and polyhedral
compilers—despite their strong optimizations—fail to deliver high

9

Reduction-Aware Directive-Based Programming via Multi-Dimensional Homomorphisms SC Workshops ’25, November 16–21, 2025, St Louis, MO, USA

GPU:
CPU:

OURs
OpenACC
OpenMP

PPCG
Pluto

PPCG+ATF
Pluto+ATF Numba

TVM
Hand Optimized (cuBLAS, cuDNN)
Hand Optimized (oneMKL, oneDNN, EKR)

NVIDIA Ampere GPU

Linear Algebra

Dot

Sp
ee

du
p

MatVec

MatMul

Sp
ee

du
p

MatMul^T bMatMul

Stencil Computations

Gaussian_2D

Sp
ee

du
p

Jacobi_3D

Data Mining

PRL

Sp
ee

du
p

Quantum Chemistry

CCSD(T)

Deep Learning

MCC

Sp
ee

du
p

MCC_Caps

Intel Skylake CPU

Linear Algebra

Dot MatVec

MatMul MatMul^T bMatMul

Stencil Computations

Gaussian_2D Jacobi_3D

Data Mining

PRL

Quantum Chemistry

CCSD(T)

Deep Learning

MCC MCC_Caps

Figure 4: Speedup (higher is better for our approach) of our generated code compared to state-of-art approaches
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OpenACC’s performance to about 60⌐ slower than our approach,
compared to 150⌐ slower without tiling. Further manual tuning
migh narrow the gap but demands substantial programming e"ort,
thereby undermining the goal of directive-based approaches aimed
at full automation.

OpenMP exhibits similar limitations, as it requires explicit man-
ual tiling to achieve higher performance. Unlike OpenACC, how-
ever, it provides no built-in tile directive, which makes tiling
technically cumbersome to express.

These challenges also account for the superior performance of
our approach over OpenACC and OpenMP in other benchmarks
such as MatMul and deep-learning computations.

Compared to polyhedral compilers, our approach achieves higher
performance, primarily because it handles reduction computations
more e"ectively—an area where polyhedral techniques still face
challenges [13].

An interesting observation involves the dot and PRL bench-
marks. The dot computation is reduction-heavy, and polyhedral
compilers—despite their strong optimizations—fail to deliver high
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and represent performance-critical building blocks in domains such
as deep learning, scienti"c computing, and data analytics. Con-
sequently, achieving high performance for these computations—
across diverse architectures (such as GPUs and CPUs) and varying
data characteristics (e.g., size and memory layout)—remains a cen-
tral research challenge, as the e#ciency of important application
areas critically depends on the performance of their data-parallel
building blocks.

Directive-based approaches—ranging from established standards
like OpenACC [27] and OpenMP [28], to polyhedral compilers such
as PPCG [43] and Pluto [9], the increasingly adopted Numba [24]—
provide directive-based mechanisms for generating high-performing
GPU and CPU code from straightforward sequential code: users
annotate their code with so-called directives which are simple pro-
gram annotations that express opportunities for optimization and
parallelization, thereby freeing the user from hardware details and
manual low-level code optimizations.

While current directive-based approaches are widely adopted in
the community—due to their ease of use and often wide applicabil-
ity to general-purpose code—we argue in this paper that they leave
room for improvement in terms of performance and portability1. In
particular, our experiments show that for reduction-heavy compu-
tations, state-of-the-art approaches appear to be suboptimal—often
even for simple computations such as dot products.

The formalism of Multi-Dimensional Homomorphisms (MDH) [32]
was recently introduced as an algebraic framework for reason-
ing about and optimizing data-parallel computations. Its corre-
sponding implementation has demonstrated the ability to generate
high-performance, portable code—e.g., in CUDA for GPUs and in
OpenCL for CPUs—from an optimization- and hardware-agnostic
MDH-based Domain-Speci!c Language (DSL). Despite abstracting
away low-level concerns, DSL-based programming can still pose
a barrier to domain scientists—such as chemists, physicists, or AI
engineers—who may be unfamiliar with such abstractions.

This paper introduces a new directive-based approach grounded
in the formalism of MDH. In contrast to existing solutions, our
MDH directive intentionally specializes in data-parallel compu-
tations rather than general-purpose code2, enabling signi"cantly
higher and more portable performance within this speci"c domain.

1By portability, we refer not only to functional portability—the ability to run the same
source code on di!erent hardware architectures—but also to performance portability,
meaning that the code maintains consistently high performance across architectures
and data characteristics.
2According to MDH [32], we consider a computation data-parallel i! expressible as:

⌐1
𝐿1∈𝑀1 . . . ⌐𝑁

𝐿𝑁 ∈𝑀𝑁
𝐿 (𝑀[𝑁1, . . . , ß𝑁 ])

for an arbitrary function f and operators ⌐𝑂 (as illustrated by examples later).
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identifying and tiling four speci!c loops (via trial and error) raises
OpenACC’s performance to about 60⌐ slower than our approach,
compared to 150⌐ slower without tiling. Further manual tuning
migh narrow the gap but demands substantial programming e"ort,
thereby undermining the goal of directive-based approaches aimed
at full automation.

OpenMP exhibits similar limitations, as it requires explicit man-
ual tiling to achieve higher performance. Unlike OpenACC, how-
ever, it provides no built-in tile directive, which makes tiling
technically cumbersome to express.

These challenges also account for the superior performance of
our approach over OpenACC and OpenMP in other benchmarks
such as MatMul and deep-learning computations.

Compared to polyhedral compilers, our approach achieves higher
performance, primarily because it handles reduction computations
more e"ectively—an area where polyhedral techniques still face
challenges [13].

An interesting observation involves the dot and PRL bench-
marks. The dot computation is reduction-heavy, and polyhedral
compilers—despite their strong optimizations—fail to deliver high
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and represent performance-critical building blocks in domains such
as deep learning, scienti"c computing, and data analytics. Con-
sequently, achieving high performance for these computations—
across diverse architectures (such as GPUs and CPUs) and varying
data characteristics (e.g., size and memory layout)—remains a cen-
tral research challenge, as the e#ciency of important application
areas critically depends on the performance of their data-parallel
building blocks.

Directive-based approaches—ranging from established standards
like OpenACC [27] and OpenMP [28], to polyhedral compilers such
as PPCG [43] and Pluto [9], the increasingly adopted Numba [24]—
provide directive-based mechanisms for generating high-performing
GPU and CPU code from straightforward sequential code: users
annotate their code with so-called directives which are simple pro-
gram annotations that express opportunities for optimization and
parallelization, thereby freeing the user from hardware details and
manual low-level code optimizations.

While current directive-based approaches are widely adopted in
the community—due to their ease of use and often wide applicabil-
ity to general-purpose code—we argue in this paper that they leave
room for improvement in terms of performance and portability1. In
particular, our experiments show that for reduction-heavy compu-
tations, state-of-the-art approaches appear to be suboptimal—often
even for simple computations such as dot products.

The formalism of Multi-Dimensional Homomorphisms (MDH) [32]
was recently introduced as an algebraic framework for reason-
ing about and optimizing data-parallel computations. Its corre-
sponding implementation has demonstrated the ability to generate
high-performance, portable code—e.g., in CUDA for GPUs and in
OpenCL for CPUs—from an optimization- and hardware-agnostic
MDH-based Domain-Speci!c Language (DSL). Despite abstracting
away low-level concerns, DSL-based programming can still pose
a barrier to domain scientists—such as chemists, physicists, or AI
engineers—who may be unfamiliar with such abstractions.

This paper introduces a new directive-based approach grounded
in the formalism of MDH. In contrast to existing solutions, our
MDH directive intentionally specializes in data-parallel compu-
tations rather than general-purpose code2, enabling signi"cantly
higher and more portable performance within this speci"c domain.

1By portability, we refer not only to functional portability—the ability to run the same
source code on di!erent hardware architectures—but also to performance portability,
meaning that the code maintains consistently high performance across architectures
and data characteristics.
2According to MDH [32], we consider a computation data-parallel i! expressible as:

⌐1
𝐿1∈𝑀1 . . . ⌐𝑁

𝐿𝑁 ∈𝑀𝑁
𝐿 (𝑀[𝑁1, . . . , ß𝑁 ])

for an arbitrary function f and operators ⌐𝑂 (as illustrated by examples later).
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identifying and tiling four speci!c loops (via trial and error) raises
OpenACC’s performance to about 60⌐ slower than our approach,
compared to 150⌐ slower without tiling. Further manual tuning
migh narrow the gap but demands substantial programming e"ort,
thereby undermining the goal of directive-based approaches aimed
at full automation.

OpenMP exhibits similar limitations, as it requires explicit man-
ual tiling to achieve higher performance. Unlike OpenACC, how-
ever, it provides no built-in tile directive, which makes tiling
technically cumbersome to express.

These challenges also account for the superior performance of
our approach over OpenACC and OpenMP in other benchmarks
such as MatMul and deep-learning computations.

Compared to polyhedral compilers, our approach achieves higher
performance, primarily because it handles reduction computations
more e"ectively—an area where polyhedral techniques still face
challenges [13].

An interesting observation involves the dot and PRL bench-
marks. The dot computation is reduction-heavy, and polyhedral
compilers—despite their strong optimizations—fail to deliver high
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and represent performance-critical building blocks in domains such
as deep learning, scienti"c computing, and data analytics. Con-
sequently, achieving high performance for these computations—
across diverse architectures (such as GPUs and CPUs) and varying
data characteristics (e.g., size and memory layout)—remains a cen-
tral research challenge, as the e#ciency of important application
areas critically depends on the performance of their data-parallel
building blocks.

Directive-based approaches—ranging from established standards
like OpenACC [27] and OpenMP [28], to polyhedral compilers such
as PPCG [43] and Pluto [9], the increasingly adopted Numba [24]—
provide directive-based mechanisms for generating high-performing
GPU and CPU code from straightforward sequential code: users
annotate their code with so-called directives which are simple pro-
gram annotations that express opportunities for optimization and
parallelization, thereby freeing the user from hardware details and
manual low-level code optimizations.

While current directive-based approaches are widely adopted in
the community—due to their ease of use and often wide applicabil-
ity to general-purpose code—we argue in this paper that they leave
room for improvement in terms of performance and portability1. In
particular, our experiments show that for reduction-heavy compu-
tations, state-of-the-art approaches appear to be suboptimal—often
even for simple computations such as dot products.

The formalism of Multi-Dimensional Homomorphisms (MDH) [32]
was recently introduced as an algebraic framework for reason-
ing about and optimizing data-parallel computations. Its corre-
sponding implementation has demonstrated the ability to generate
high-performance, portable code—e.g., in CUDA for GPUs and in
OpenCL for CPUs—from an optimization- and hardware-agnostic
MDH-based Domain-Speci!c Language (DSL). Despite abstracting
away low-level concerns, DSL-based programming can still pose
a barrier to domain scientists—such as chemists, physicists, or AI
engineers—who may be unfamiliar with such abstractions.

This paper introduces a new directive-based approach grounded
in the formalism of MDH. In contrast to existing solutions, our
MDH directive intentionally specializes in data-parallel compu-
tations rather than general-purpose code2, enabling signi"cantly
higher and more portable performance within this speci"c domain.

1By portability, we refer not only to functional portability—the ability to run the same
source code on di!erent hardware architectures—but also to performance portability,
meaning that the code maintains consistently high performance across architectures
and data characteristics.
2According to MDH [32], we consider a computation data-parallel i! expressible as:

⌐1
𝐿1∈𝑀1 . . . ⌐𝑁

𝐿𝑁 ∈𝑀𝑁
𝐿 (𝑀[𝑁1, . . . , ß𝑁 ])

for an arbitrary function f and operators ⌐𝑂 (as illustrated by examples later).
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Experimental Results
Why MDH outperforms related approaches:

Higher performance through  
efficient reduction handling and MDH-driven optimizations

MDH vs OpenACC/OpenMP (*): 
• Limited reduction support (e.g., for PRL) 
• Rigid, heuristic-driven optimizations 
• Limited tiling efficiency: manual tiling can 

improve performance, but is complex, error-
prone, and contrary to the directive-based 
philosophy

MDH vs Polyhedral Compilers: 
• Missing semantic information  

about reductions 
• Polyhedral transformation often chosen 

toward too rigid optimization goals,  
e.g., always outer parallelization 

MDH vs Numba (*): 
• Missing semantic information about reductions 
• Seems to not apply important optimizations  

in its generated code, e.g., tiling

MDH vs Vendor Libraries (*): 
• Optimized toward average high performance 

over data characteristics 
• MDH auto-tunes for particular sizes 

(*) Performance results are difficult to interpret with certainty,  
as the generated assembly (PTX/LLVM) obscures the  
underlying optimization decisions
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and represent performance-critical building blocks in domains such
as deep learning, scienti"c computing, and data analytics. Con-
sequently, achieving high performance for these computations—
across diverse architectures (such as GPUs and CPUs) and varying
data characteristics (e.g., size and memory layout)—remains a cen-
tral research challenge, as the e#ciency of important application
areas critically depends on the performance of their data-parallel
building blocks.

Directive-based approaches—ranging from established standards
like OpenACC [27] and OpenMP [28], to polyhedral compilers such
as PPCG [43] and Pluto [9], the increasingly adopted Numba [24]—
provide directive-based mechanisms for generating high-performing
GPU and CPU code from straightforward sequential code: users
annotate their code with so-called directives which are simple pro-
gram annotations that express opportunities for optimization and
parallelization, thereby freeing the user from hardware details and
manual low-level code optimizations.

While current directive-based approaches are widely adopted in
the community—due to their ease of use and often wide applicabil-
ity to general-purpose code—we argue in this paper that they leave
room for improvement in terms of performance and portability1. In
particular, our experiments show that for reduction-heavy compu-
tations, state-of-the-art approaches appear to be suboptimal—often
even for simple computations such as dot products.

The formalism of Multi-Dimensional Homomorphisms (MDH) [32]
was recently introduced as an algebraic framework for reason-
ing about and optimizing data-parallel computations. Its corre-
sponding implementation has demonstrated the ability to generate
high-performance, portable code—e.g., in CUDA for GPUs and in
OpenCL for CPUs—from an optimization- and hardware-agnostic
MDH-based Domain-Speci!c Language (DSL). Despite abstracting
away low-level concerns, DSL-based programming can still pose
a barrier to domain scientists—such as chemists, physicists, or AI
engineers—who may be unfamiliar with such abstractions.

This paper introduces a new directive-based approach grounded
in the formalism of MDH. In contrast to existing solutions, our
MDH directive intentionally specializes in data-parallel compu-
tations rather than general-purpose code2, enabling signi"cantly
higher and more portable performance within this speci"c domain.

1By portability, we refer not only to functional portability—the ability to run the same
source code on di!erent hardware architectures—but also to performance portability,
meaning that the code maintains consistently high performance across architectures
and data characteristics.
2According to MDH [32], we consider a computation data-parallel i! expressible as:

⌐1
𝐿1∈𝑀1 . . . ⌐𝑁

𝐿𝑁 ∈𝑀𝑁
𝐿 (𝑀[𝑁1, . . . , ß𝑁 ])

for an arbitrary function f and operators ⌐𝑂 (as illustrated by examples later).
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Conclusion

We present a reduction-aware directive for optimizing data-parallel computations: 

• provided in the easy-to-use Python programming language  

• supports user-defined reduction operators  

• formally grounded in the MDH formalism 

• experimental real-world studies show encouraging performance results: e.g., 
speedups of up to 6.5x over hand-optimized libraries from NVIDIA and Intel 

Future Work: 

Collaborate with the OpenMP/OpenACC community to incorporate reduction-
awareness into these approaches.

Our approach is reduction-aware, not reduction-focused — 
designed to achieve high performance also for reduction-free computations

Please feel free to reach out  
if you are interested in collaborating!
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The scalar operation is clearly separated from reduction computations in our approach:

Distinctive Design Aspect

SC Workshops ’25, November 16–21, 2025, St Louis, MO, USA Schulze, Gorlatch, Rasch

This translation enables us to leverage the existing DSL-based MDH
pipeline [32, 33, 35, 36] for parallel code generation, which auto-
matically produces auto-tuned parallel code (e.g., for GPUs and
CPUs) with optimizations such as tiling, data movement, and paral-
lelization.

4 The MDH Directive
We !rst introduce our MDH-based directive for data-parallel com-
putations through practical examples in Section 4.1. Afterwards, we
discuss its general structure in Section 4.2, and !nally, we demon-
strate how to generate an MDH DSL program from it in Section 4.3.

4.1 Introductory Examples
To promote user productivity, our approach adopts Python as the
host language. We implement our directive as a Python decorator
(the same as Numba—line 2 in Listing 4) which is a native Python
language construct for code annotations.

Linear Algebra. Listings 8 and 9 show how Matrix-Vector Multi-
plication (MatVec) and Matrix Multiplication (MatMul) are optimized
using our MDH directive (lines 2–4 in Listing 8, and lines 2–4 in
Listing 9).

1 def matvec( T:BasicType , I:int ,K:int ):

2 @mdh( out( w = Buffer[T] ) ,

3 inp( M = Buffer[T], v = Buffer[T] ) ,

4 combine_ops( cc, pw(add) ) )

5 def mdh_matvec__T_I_K( w, M,v ):

6 for i in range(I):
7 for k in range(K):
8 w[i] = M[i,k] * v[k]

9 return mdh_matvec__T_I_K

Listing 8: MatVec optimized via MDH Directive (Python)

Listing 8 illustrates how our MDH directive speci!es the input
and output bu"ers along with their corresponding basic type T

(lines 2–3), e.g., T=fp32. In particular, our directive captures the
reduction operators (line 4), which are for MatVec concatenation cc

and point-wise addition pw(add).6

A key design di"erence of our approach, compared to the existing
methods in Section 2, lies in how the loop body is structured (line 8).
In our approach, the loop body computes a single point in the
iteration space without performing reductions—i.e., the aggregation
across the iteration space is not encoded directly in the loop body
(using = in line 8 of Listing 8, rather than += as in line 13 of Listing 2,
for example). Instead, reductions are semantically captured and
expressed through our directive. As a result, reduction operations
(such as +=) are abstracted away from the loop body.

Although this separation may appear unconventional and re-
quire some adaptation, it o"ers a major advantage: nested reduc-
tions can be expressed naturally and concisely in our approach
(as elaborated later in this section), whereas related approaches
generally lack native support and require complex workarounds
(also discussed later).

6Operators cc and pw are pre-implemented by our system due to their frequent use
(implementations provided in the Appendix, Section A, for the interested reader).

Compared to OpenMP and OpenACC (Listings 2 and 3), our
approach does not require additional temporary variables for inter-
mediate results (such as sum in Listings 2 and 3) or zero-initializing
result bu"ers (as Numba, see line 5 in Listing 4).

1 def matmul( T:BasicType , I:int ,J:int ,K:int ):

2 @mdh( out( C = Buffer[T] ) ,

3 inp( A = Buffer[T], B = Buffer[T] ) ,

4 combine_ops( cc, cc, pw(add) ) )

5 def matmul__T_I_J_K( C, A,B ):

6 for i in range(I):
7 for j in range(J):
8 for k in range(K):
9 C[i,j] = A[i,k] * B[k,j]

10 return matmul__T_I_J_K

Listing 9: MatMul optimized via MDH Directive (Python)

Listing 9 shows our dirdective for MatMul (lines 2–4), which
closely resembles the directive for MatVec in Listing 8 and thus
re#ects the natural similarity between the two operations. Apart
from di"erent bu"er names (lines 2–5), the MatMul directive intro-
duces an additional cc dimension (line 4) to account for the extra
j-dimension in its iteration space.

Stencil Computations. Listing 10 shows our directive applied to
computation Jacobi (Jacobi1D). This example is relatively straight-
forward, as Jacobi1D operates over a regular one-dimensional iter-
ation space that does not involve any reduction computations.

1 def jacobi1d( T:BasicType , I:int ):

2 @mdh( out( y = Buffer[T] ) ,

3 inp( x = Buffer[T] ) ,

4 combine_ops( cc ) )

5 def jacobi1d__T_I( y, x ):

6 for i in range(I):
7 y[i] = ( x[i+0] + x[i+1] + x[i+2] ) / 3.0

8 return jacobi1d__T_I

Listing 10: Jacobi1D optimized via MDH Directive (Python)

Data Mining. Listing 11 shows our directive for Probabilistic
Record Linkage (PRL)—a popular example used in data mining to
!nd duplicate entries in a database [34]. A key characteristic of PRL
is its use of the point-wise reduction operator pw (line 26): instead
of relying on a simple addition operator—as commonly used in
linear algebra routines (e.g., in line 4 of Listing 4)—it employs a
PRL-speci!c customization function (lines 6–19 in Listing 11).

Deep Learning. Listing 12 shows our directive for Multi-Channel
Convolution (MCC)—a generalization of standard convolution com-
monly used in deep learning. In contrast to previous examples,
MCC uses unconventional bu"er sizes: according to MCC’s usage
in ResNet-50, the img bu"er (lines 13–14) is arti!cially enlarged in
the second and third dimension (lines 4–5)7.

7If not explicitly speci!ed (Listings 8–11), bu"er sizes are automatically inferred from
the iteration space and index functions.

4

We use “=“ instead of “+=“: 

• loop body computes single point in the iteration space  

• reductions are expressed through our directive 

• aggregation across the iteration space is not encoded in the loop body

Such separation allows exploiting MDH-driven optimizations 
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1 SIZE_FUNC (⌐) ::= !lambda I: I! | !lambda I: {0}!;

2
3 BSC_TYP ::= (* as in Listing 11 *);

4 POS_INT ::= !1! | !2! | ...

5 IDF ::= (* as in Listing 11 *);

6
7 LTR ::= (* Listing 12 *) | !...!;

8
9 CTR(⌐) ::= (* Listing 12 *) | CO_FOR

10 CO_FOR ::= !for!, IDF ,![!,<EXP >,!] in!,

11 EXP ,!:\n!,STMs;

12
13 STMs ::= (* as in Listing 12 *)

Listing 16. Extension of Listing 12 for reduction oper-
ators (EBNF). Gray highlights correspond to Listing 15.
Angle brackets denote a comma-separated list.

of size (I[1],. . . ,I[d-1],Q,I[d+1],. . . ,I[D]); the result
res must have the following size [39]: (I[1],. . . ,I[d-1],
index_set_function(P⌐Q), I[d+1],. . . ,I[D])11.

1 def cc( T:ScalarType , D:int , d:int ):
2 @combine_operator(
3 index_set_function = lambda I: I,
4 scalar_type = T,
5 dimensionality = D,
6 operating_dimension = d
7 )
8 def cc__T_D_d( I, P,Q ):
9 def cc__T_D_d__I_PQ( res , lhs ,rhs ):
10
11 for i[1,...,d-1] in I[1,...,d-1]:
12 for i[d+1,...,D] in I[d+1,...,D]:
13
14 for i[d] in P:
15 res[ i[1,...,d,...,D] ] =
16 lhs[ i[1,...,d,...,D] ]
17 for i[d] in Q:
18 res[ i[1,...,d,...,D] ] =
19 rhs[ i[1,...,d,...,D] ]
20 return cc__T_D_d__I_PQ
21 return cc__T_D_d

Listing 17. Reduction operator cc (concatenation)
in MDH-DSL

In Listing 17, we !rst iterate over all dimensions except d
(lines 11–12). Afterwards, we iterate over dimension d (lines 14
and 17), and we write lhs consecutively to the !rst part of
res (lines 15–16) and rhs to the second part of res (lines 18–
19), thereby producing the concatenation of lhs and rhs
in res.
11The I[1], I[2], . . . , as well as P and Q, denote index sets [39]. For
simplicity, the reader may think of them as integer values representing sizes
(with P⌐Q corresponding to P+Q).

1 def pw( cf:PW_CustomFunc ):
2 def pw__cf( T:ScalarType , D:int , d:int ):
3 @combine_operator(
4 index_set_function = lambda I: {0},
5 scalar_type = T,
6 dimensionality = D,
7 operating_dimension = d
8 )
9 def pw__cf__T_D_d( I, P,Q ):
10 def pw__cf__T_D_d__I_PQ( res , lhs ,rhs ):
11 for i[1,...,d-1] in I[1,...,d-1]:
12 for i[d+1,...,D] in I[d+1,...,D]:
13 cf(
14 res[ i[1,...,d-1],0,i[d+1,...,D] ],
15 lhs[ i[1,...,d-1],0,i[d+1,...,D] ],
16 rhs[ i[1,...,d-1],0,i[d+1,...,D] ])
17 return pw__cf__T_D_d__I_PQ
18 return pw__cf__T_D_d
19 return pw__cf

Listing 18. Reduction operator pw (pointwise) in
MDH-DSL for arbitrary customization function cf

Listing 18 shows our implementation of reduction opera-
tor pw (pointwise combination), which is structurally similar
to concatenation in Listing 17. The key di"erences are: 1) the
index set function always maps to {0} (line 4 in Listing 18),
since pw collapses the reduction dimension to a single ele-
ment (accessed via index 0); 2) instead of writing values from
lhs and rhs consecutively to memory (Listing 17, lines 14–
19), the elements are reduced using a custom function cf
(Listing 18, lines 13–16), e.g., cf=prl_max (Listing 6).

Listing 19 shows our implementation of reduction op-
erator ps (pre!x-sum) which combines characteristics of
reduction operators cc and pw: the same as cc, operators ps
retains the size of the iteration space dimension (line 4), but
it uses a binary function for computing its results (line 16),
analogously to pw.

5 Related Work
Popular approaches introduce DSL-based high-level abstrac-
tions that simplify programming for modern parallel archi-
tectures. Prominent examples include those discussed in Sec-
tion 2, as well as AKG [9], TC [45], and TACO [26], together
with numerous other DSLs [8, 10, 14, 20, 24, 25, 47]. Building
upon these e"orts, our DSL further advances the state of the
art by providing a principled and expressive treatment of
reduction operators. For instance, both TACO and TC rely
on Einsum-based DSLs and thus face issues similar to those
described for Halide in Section 2. In contrast, domain-speci!c
libraries such as NVIDIA cuBLAS and Intel oneMKL achieve
high performance but are inherently limited to speci!c ar-
chitectures and narrow domains like linear algebra [16] and
stencil computations [27].
Another line of work employs directive-based program-

ming, as in OpenMP [34], OpenACC [33], and Numba [29],
9
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1 SIZE_FUNC (⌐) ::= !lambda I: I! | !lambda I: {0}!;

2
3 BSC_TYP ::= (* as in Listing 11 *);

4 POS_INT ::= !1! | !2! | ...

5 IDF ::= (* as in Listing 11 *);

6
7 LTR ::= (* Listing 12 *) | !...!;

8
9 CTR(⌐) ::= (* Listing 12 *) | CO_FOR

10 CO_FOR ::= !for!, IDF ,![!,<EXP >,!] in!,

11 EXP ,!:\n!,STMs;

12
13 STMs ::= (* as in Listing 12 *)

Listing 16. Extension of Listing 12 for reduction oper-
ators (EBNF). Gray highlights correspond to Listing 15.
Angle brackets denote a comma-separated list.

of size (I[1],. . . ,I[d-1],Q,I[d+1],. . . ,I[D]); the result
res must have the following size [39]: (I[1],. . . ,I[d-1],
index_set_function(P⌐Q), I[d+1],. . . ,I[D])11.

1 def cc( T:ScalarType , D:int , d:int ):
2 @combine_operator(
3 index_set_function = lambda I: I,
4 scalar_type = T,
5 dimensionality = D,
6 operating_dimension = d
7 )
8 def cc__T_D_d( I, P,Q ):
9 def cc__T_D_d__I_PQ( res , lhs ,rhs ):
10
11 for i[1,...,d-1] in I[1,...,d-1]:
12 for i[d+1,...,D] in I[d+1,...,D]:
13
14 for i[d] in P:
15 res[ i[1,...,d,...,D] ] =
16 lhs[ i[1,...,d,...,D] ]
17 for i[d] in Q:
18 res[ i[1,...,d,...,D] ] =
19 rhs[ i[1,...,d,...,D] ]
20 return cc__T_D_d__I_PQ
21 return cc__T_D_d

Listing 17. Reduction operator cc (concatenation)
in MDH-DSL

In Listing 17, we !rst iterate over all dimensions except d
(lines 11–12). Afterwards, we iterate over dimension d (lines 14
and 17), and we write lhs consecutively to the !rst part of
res (lines 15–16) and rhs to the second part of res (lines 18–
19), thereby producing the concatenation of lhs and rhs
in res.
11The I[1], I[2], . . . , as well as P and Q, denote index sets [39]. For
simplicity, the reader may think of them as integer values representing sizes
(with P⌐Q corresponding to P+Q).

1 def pw( cf:PW_CustomFunc ):
2 def pw__cf( T:ScalarType , D:int , d:int ):
3 @combine_operator(
4 index_set_function = lambda I: {0},
5 scalar_type = T,
6 dimensionality = D,
7 operating_dimension = d
8 )
9 def pw__cf__T_D_d( I, P,Q ):
10 def pw__cf__T_D_d__I_PQ( res , lhs ,rhs ):
11 for i[1,...,d-1] in I[1,...,d-1]:
12 for i[d+1,...,D] in I[d+1,...,D]:
13 cf(
14 res[ i[1,...,d-1],0,i[d+1,...,D] ],
15 lhs[ i[1,...,d-1],0,i[d+1,...,D] ],
16 rhs[ i[1,...,d-1],0,i[d+1,...,D] ])
17 return pw__cf__T_D_d__I_PQ
18 return pw__cf__T_D_d
19 return pw__cf

Listing 18. Reduction operator pw (pointwise) in
MDH-DSL for arbitrary customization function cf

Listing 18 shows our implementation of reduction opera-
tor pw (pointwise combination), which is structurally similar
to concatenation in Listing 17. The key di"erences are: 1) the
index set function always maps to {0} (line 4 in Listing 18),
since pw collapses the reduction dimension to a single ele-
ment (accessed via index 0); 2) instead of writing values from
lhs and rhs consecutively to memory (Listing 17, lines 14–
19), the elements are reduced using a custom function cf
(Listing 18, lines 13–16), e.g., cf=prl_max (Listing 6).

Listing 19 shows our implementation of reduction op-
erator ps (pre!x-sum) which combines characteristics of
reduction operators cc and pw: the same as cc, operators ps
retains the size of the iteration space dimension (line 4), but
it uses a binary function for computing its results (line 16),
analogously to pw.

5 Related Work
Popular approaches introduce DSL-based high-level abstrac-
tions that simplify programming for modern parallel archi-
tectures. Prominent examples include those discussed in Sec-
tion 2, as well as AKG [9], TC [45], and TACO [26], together
with numerous other DSLs [8, 10, 14, 20, 24, 25, 47]. Building
upon these e"orts, our DSL further advances the state of the
art by providing a principled and expressive treatment of
reduction operators. For instance, both TACO and TC rely
on Einsum-based DSLs and thus face issues similar to those
described for Halide in Section 2. In contrast, domain-speci!c
libraries such as NVIDIA cuBLAS and Intel oneMKL achieve
high performance but are inherently limited to speci!c ar-
chitectures and narrow domains like linear algebra [16] and
stencil computations [27].
Another line of work employs directive-based program-

ming, as in OpenMP [34], OpenACC [33], and Numba [29],
9
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1 def ps( cf:PS_CustomFunc ):
2 def ps__cf( T:ScalarType , D:int , d:int ):
3 @combine_operator(
4 index_set_function = lambda I: I,
5 scalar_type = T,
6 dimensionality = D,
7 operating_dimension = d
8 )
9 def ps__cf__T_D_d( I, P,Q ):
10 def ps__cf__T_D_d__I_PQ( res , lhs ,rhs ):
11 for i[1,...,d-1] in I[1,...,d-1]:
12 for i[d+1,...,D] in I[d+1,...,D]:
13 for i[d] in P:
14 q_sm_i_d = set(q for q in Q if q < i[d])
15 if q_sm_i_d:
16 cf(
17 res[ i[1,...,d-1] ,
18 i[d] ,
19 i[d+1,...,D] ],
20 lhs[ i[1,...,d-1] ,
21 i[d] ,
22 i[d+1,...,D] ],
23 rhs[ i[1,...,d-1] ,
24 max( q_sm_i_d ),
25 i[d+1,...,D] ] )
26 else:
27 res[ i[1,...,d-1] ,
28 i[d] ,
29 i[d+1,...,D] ] =
30 lhs[ i[1,...,d-1] ,
31 i[d] ,
32 i[d+1,...,D] ]
33 for i[d] in Q:
34 # ... (analogous to above)
35 return ps__cf__T_D_d__I_PQ
36 return ps__cf__T_D_d
37 return ps__cf

Listing 19. Reduction operator ps (pre!x-sum) in
MDH-DSL for arbitrary customization function cf

which augment existing host languages with annotations
rather than de!ning a dedicated DSL. While such approaches
enable pragmatic parallelization, their support for reduc-
tions is typically limited to simple cases such as sum or
mul, or missing entirely as in Numba. Similarly, automatic
optimization frameworks—such as Polly [19], PPCG [46],
Pluto [12], LLVM IR extensions for parallelization and vec-
torization [44], automatic Python loop parallelization [22],
and compiler-based graph representations [13]—excel at op-
timizing low-level code but lack access to the high-level
semantic information necessary for systematic reasoning
about reduction-based computations.
A further advantage of our DSL design lies in its formal

foundation, based on the MDH approach [39], which pro-
vides a rigorous speci!cation of DSL semantics. This is partic-
ularly relevant for expressing and reasoning about complex
reduction computations, widely regarded as complicated [4].

Whereas prior MDH work focuses on introducing the theo-
retical foundation for data-parallel computations—supported
by an unpublished, proof-of-concept C++ interface for per-
formance experiments—this paper demonstrates how this
formalism can be turned into a practical DSL speci!cation.
We concretize the formal MDH building blocks in Python, de-
!ne the scope of computations supported by our implemen-
tation12, and show that our DSL provides richer expressivity
and semantic structure than popular related approaches—key
prerequisites for high-performance code generation.
Another line of work focuses on providing general in-

frastructures for DSL development—such as MLIR [30] and
AnyDSL [31]—which serve as "exible foundations for imple-
menting DSLs, rather than constituting DSLs themselves.

Finally, frameworks such as TensorFlow [2], PyTorch [35],
and XLA [17] operate at a higher abstraction level than our
DSL. Our approach is complementary to these systems and
could serve as a backend to contribute to their expressiveness
and optimization potential.

6 Conclusion & Future Work
We introduce MDH-DSL—a reduction-aware domain-speci!c
language for data-parallel computations, grounded in the
formalism of Multi-Dimensional Homomorphisms (MDH).
By explicitly representing reduction operators and their al-
gebraic properties, MDH-DSL enhances expressiveness and
enables advanced optimization opportunities that go beyond
conventional DSL abstractions.
In particular, MDH-DSL supports diverse classes of user-

de!ned reduction operators—including those with expand-
ing output sizes and nested (multi-dimensional) reductions—
thereby providing a unifying and expressive way to capture
a wide range of practical data-parallel computations. Using a
small set of composable building blocks, users can construct
sophisticated reductions for domains such as data mining,
with clear implications for performance and portability, as
experimentally con!rmed by Rasch [39] in prior work.

Overall, MDH-DSL bridges the gap between the mathemat-
ical rigor of the MDH formalism [39] and practical code
generation [3], paving the way toward fully automated opti-
mization pipelines for heterogeneous parallel architectures.
In future work, we plan to show that the explicit and

structured representation of reduction operators in MDH-DSL
also facilitates advanced program analyses and optimizations,
such as kernel fusion [32]. For instance, MDH-DSL enables
formally proving the correctness of aggressive fusion rules
for reduction-based computations, thereby complementing
approaches such as Linalg and Lift, whose implicit operator
representations or functional composition and nesting styles
make such analyses more challenging.

12MDH theoretically encompasses arbitrary mathematical functions (in-
cluding non-computable ones); our implementation focuses on practical,
e#ciently realizable computations (Figures 12 and 16).
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